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RELATIVE N-TH NON-COMMUTING GRAPHS OF

FINITE GROUPS

A. ERFANIAN∗ AND B. TOLUE

Communicated by Ali Reza Ashrafi

Abstract. Suppose n is a fixed positive integer. We introduce the
relative n-th non-commuting graph Γn

H,G, associated to the non-
abelian subgroup H of group G. The vertex set is G \ Cn

H,G in
which Cn

H,G = {x ∈ G : [x, yn] = 1 and [xn, y] = 1 for all y ∈ H}.
Moreover, {x, y} is an edge if x or y belong to H and xyn 6= ynx
or xny 6= yxn. In fact, the relative n-th commutativity degree,
Pn(H,G) the probability that n-th power of an element of the sub-
group H commutes with another random element of the group G
and the non-commuting graph are the keys to construct such a
graph. It is proved that two isoclinic non-abelian groups have iso-
morphic graphs under special conditions.

1. Introduction

Erdös associated a graph Γ to the group G, whose vertex set is G (as
a set)and two vertices join whenever they do not commute. He asked
whether there is a finite bound for the cardinalities of cliques in Γ, if
Γ has no infinite clique. This problem was posed by Neumann in [13]
and gave a positive answer to Erdös ’s question. Of course, there are
some other ways to make a graph associated to a group or semigroup.
One may refer to the works of Bertram et al. [4], Grunewald et al. [7],
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664 Erfanian and Tolue

Moghadamfar et al. [11] and Williams [14] or recent papers on non-
commuting graph, Engel graph and non-cyclic graph in [2], [1] and [3],
respectively.

Let H be a subgroup of a finite group G and n a positive integer.
Mohd Ali et al. in [12] introduced n-th commutativity degree which is
the probability that the n-th power of a random element of G commute
with another element. If n = 1 then this probability coincide to the
commutativity degree which was investigated by Erdös and Turan in
[5]. Later Erfanian et al. improved their results to the relative case.
They defined the relative n-th commutativity degree of a subgroup H
of G as is the probability of commuting the n-th power of an element of
the subgroup H with an element of group G. They generalized several
facts which is valid for commutativity degree in [6].

By these facts about the graphs and the probability, we led to in-
troduce the relative n-th non-commuting graph. We define the rela-
tive n-th non-commuting graph ΓnH,G, with vertex set G \ CnH,G, where

CnH,G = {x ∈ G : [x, yn] = 1 and [xn, y] = 1 ∀ y ∈ H}. Moreover,

{x, y} is an edge if x or y belong to H and xyn 6= ynx or xny 6= yxn.
We discuss about diameter, dominating set, domination number, clique
number and planarity of the graph. Third section is organized to state
connections between the n-th non-commuting graph and the n-th com-
mutativity degree. We find a lower bound for the number of edges of the
n-th non-commuting graph and also we show that this lower bound is
sharp for nilpotent groups of class 2. Moreover, we prove that there is no
relative n-th non-commuting star graph, n-th non-commuting complete
graph and relative n-th noncommuting complete bipartite graph associ-
ated to an AC-group. We discuss about non-regularity of the relative
n-th non-commuting graph in some special cases as well. Furthermore,
it is proved that two isoclinic non-abelian groups are associated to the
isomorphic graphs in special cases.

2. The n-th Non-commuting Graph

Let us start with the definition of the relative n-th non-commuting
graph.

Definition 2.1. Let n be a fixed positive integer. We assign a graph
to a non-abelian subgroup H of group G. The vertex set is G \ CnH,G
where CnH,G = {x ∈ G : [x, yn] = 1 and [xn, y] = 1 for all y ∈ H} and
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two distinct vertices x and y join together whenever x or y belong to
H and [x, yn] 6= 1 or [xn, y] 6= 1 . We call such a graph relative n-th
non-commuting graph and is denoted by ΓnH,G. If H = G then the graph
ΓnG is n-th non-commuting graph.

It is clear that for n = 1 the graph Γ1
G corresponds to the non-

commuting graph denoted by ΓG in [2]. Note that if H is an abelian
subgroup of G or has exponent that divides n then there is no vertex
in H but some vertices in G \H may exist and hence ΓnH,G is an empty
graph. Similarly, if the exponent of the group G divides n or G is an
abelian then ΓnG is a null graph. Furthermore, if G is a group which its
central factor is elementary abelian p-group of rank s. If m ≡ n(mod p)
then ΓmG = ΓnG.

Example 2.2.

(i) If n is an even or odd number and G = D8 then ΓnG has no
vertices or ΓnG = ΓG, respectively.

(ii) For even or odd number n, V (ΓnS3
) = V (ΓS3).

(iii) Let G be a group of exponent m such that n ≡ r (mod m), then
ΓnG = ΓrG.

Theorem 2.3. For any non-abelian group G and n ∈ N, diam(ΓnG) ≤ 4.
Moreover, the girth of ΓnG is less than or equal to 4.

Proof. Let x and y be two distinct vertices of the graph such that they
are not adjacent. We may assume xyn = ynx and xny = yxn. Since
x and y are not in CnG, there exist x1, y1 ∈ V (ΓnG) where {x, x1} and
{y, y1} are edges. If x and y1 or y and x1 are adjacent then d(x, y) = 2.
Otherwise, ([x, yn1 ] = 1 and [xn, y1] = 1) and ([x1, y

n] = 1 and [xn1 , y] =
1). Moreover, (i) [x1, x

n] 6= 1 or (ii) [xn1 , x] 6= 1 and (iii) [y1, y
n] 6=

1 or (iv) [yn1 , y] 6= 1. Thus, we have four cases. If (i) and (iii) then x1y1

is a vertex which is join x and y, hence d(x, y) = 2. Suppose (ii) and
(iv). If x1 joins y1 then d(x, y) ≤ 3. Assume x1 and y1 are not adjacent,
then xy is a vertex which joins x1 and y1 so d(x, y) ≤ 4. Now, suppose
(i) and (iv). If x1 and y1 are adjacent then d(x, y) ≤ 3. Otherwise
we have x1y

n
1 = yn1x1 and x

n
1y1 = y1x

n
1 then x1y is a vertex which is

adjacent to y1 and x because [x1y, y
n
1 ] 6= 1 and [x1y, x

n] 6= 1 and this
means d(x, y) ≤ 3. Similarly, for the case (ii) and (iii) if x1 and y1 are
adjacent then d(x, y) ≤ 3. Otherwise, xy1 is a vertex adjacent to x1 and
y so d(x, y) ≤ 3.
In order to compute the girth, let {x, y} be an edge, if xny 6= yxn then xy
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is a vertex which joins x. Consider two cases, if xyn 6= ynx then clearly
xy and y are adjacent so we have cycle with length 3. If xyn = ynx then
for vertices x and y there exist x1 and y1 respectively. Now, without loss
of generality suppose y = x1 and [xn, y] 6= 1. If x joins y1 then we have
a triangle, so suppose not. Consider [yn, y1] 6= 1 consequently yy1 is a
vertex that joins y and x, a triangle obtained. Moreover, if [y, yn1 ] 6= 1
then xy is a vertex which joins x and y1 so we have a square. Suppose
y1 6= x and x1 6= y with xyn = ynx. If y joins x1 or x and y1 are
adjacent then we get a triangle so suppose not. We have (i) [x1, x

n] 6=
1 or (ii) [xn1 , x] 6= 1 and (iii) [y1, y

n] 6= 1 or (iv) [yn1 , y] 6= 1. Now,
consider four cases similar as the argument for the diameter. Note that,
if (ii) and (iii) then xy1 is a vertex joins y. Suppose x1 and y1 are not
adjacent, so xy1 join x1 and we make a cycle of length 4. Furthermore,
if (ii), (iv) and x1 and y1 are not adjacent, then {x, y, y1, xy} is a cycle of
length 4. For the case, (i) and (iv) in the worst conditions i.e. {x1, y1},
{x, y1} and {x1, y} are not edges then xy is a vertex which joins y1 and
x so we have a square. Case (i) and (iii), follows by similar method that
x1y1 is a vertex which joins x and y. �

In particular, diam(ΓG) = 2 and the girth of ΓG is 3 (see [2]). We
define CnG(S) = {y ∈ G : [s, yn] = 1 and [sn, y] = 1 for all s ∈ S}, where
S is the subset of G.

Now, let us deal with the dominating set of the graph. The following
results are generalizations of Remark 2.5, Proposition 2.12 part (1),
Remark 2.13 and Proposition 2.14 in [2] so we prefer to omit some of
the proofs.

Proposition 2.4. If {x} is a dominating set for ΓnH,G where x ∈ H and

n is an odd number, then x2 = 1, CnH,G = 1 and CnG(x) = 〈x〉.

Proof. If x2 6= 1, then x−1 is not adjacent to x. If CnH,G contains a

non-trivial element g then [g, xn] = [g, x] = 1 and [gn, x] = 1. Therefore
t = gx is a vertex which does not join x. Because for vertex x, there
exists y ∈ H such that (i) xyn 6= ynx or (ii) xny 6= yxn. If (i) or
(ii), then t ∈ V (ΓnH,G) because [t, yn] 6= 1 or [tn, y] 6= 1, respectively.

Furthermore, t is not adjacent to x, since clearly [gnxn, x] = 1 and
[t, xn] = [gx, xn] = 1. For the last part, if g ∈ CnG(x) is distinct from x
and 1, then as it is not in CnH,G, it is a vertex not adjacent to x and we
get a contradiction. �
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In the above proposition if H = G we can deduce similar result for
ΓnG when n is odd. Furthermore, if {x} is a dominating set for ΓnG when
n is odd, then Z(G) = 1. For a subgroup H of G, S ⊆ H ∩ V (ΓnH,G) is

a dominating set of ΓnH,G if and only if CnG(S) ⊆ CnH,G ∪ S. Again, by
considering H = G similar assertion follows for ΓnG. It is easy to verify
that V (ΓnH,G) is a dominating set for ΓnG whenever CnH,G = 1. If S is
an dominating set for ΓnH then it is a dominating set for ΓnH,G whenever

CnH,G = CnG(S).

Proposition 2.5. Let G be a finite non-abelian group and ω(Γ) denotes
the clique number of the graph Γ.

(i) For any non-abelian subgroup H of G, ω(ΓnH) ≤ ω(ΓnG).
(ii) For any non-abelian factor group G/N of G, ω(ΓnG/N ) ≤ ω(ΓnG).

Proof. The first part follows easily. For (ii) assume that {g1N, · · · , gsN}
are the vertices for the maximal complete subgraph of ΓnG/N . As [gi, g

n
j ] 6∈

N or [gni , gj ] 6∈ N we conclude that gni gj 6= gjg
n
i or gnj gi 6= gig

n
j . Thus,

{g1, · · · , gs} is a complete subgraph of ΓnG. �

By the above proposition it follows that

ω(ΓnPSL(m,R)) ≤ ω(ΓnPGL(m,R)) ≤ ω(ΓnGL(m,R)).

Obviously, CnG ⊆ CnH,G and ΓnH,G is an induced subgraph of ΓnG. More-
over, ΓnH is an induced subgraph of ΓnH,G and ΓnH,G itself is an induced

subgraph of Γ1
H,G. It is clear that Z(G) ⊆ CnG and if x joins y in ΓnG

they are adjacent in ΓG, consequently ΓnG is an induced subgraph of ΓG.
Recall from [2] that ΓG is planar if and only if G ∼= S3 or D8 or Q8.
Hence, if G ∼= S3 or D8 or Q8 then the n-th non-commutating graph is
planar.

A group is called an AC-group if the centralizer of the set of non-
central elements is abelian. Let G be an AC-group. As CnG ⊆ CnG(x) ⊆
CG(xn) for a vertex x, elements of CnG commute with each other, we de-
duce CnG, CnG(x) are subgroups ofG such that CnG(x) = CG(xn) and CnG =
Z(G). Hence, ΓnG = ΓG in this case. Thus ΓnG which is associated to the
AC-group G has the exact properties of the non-commuting graph ΓG
(see [2]).

Theorem 2.6. Let G be an AC-group. Non-null graph ΓnG is planar if
and only if G ∼= S3 or D8 or Q8.
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Example 2.7. The n-th non-commutating graph ΓnS3,S4
is not planar.

Because K5 with vertices {(1 2), (1 2 3), (2 3 4), (1 2 4), (1 3 4)} and
{(1 2), (1 3), (2 3), (1 2 3), (1 2 3 4)} are its subgraph whenever n is an
even or odd number respectively. Thus, ΓnS3,Sm

is not planar, for m ≥ 4.

3. n-th Non-commuting Graphs and Pn(G)

In this section, by the use of probability theory and graph theory
obtain some results for some graphs. Therefore, we should recall some
necessary definitions. For a non-abelian group G the relative n-th com-
mutativity degree is the probability of commuting the n-th power of an
element of a subgroup H with an element of the group G. It is defined
by the following ratio

Pn(H,G) =
|{(x, y) ∈ H ×G : [xn, y] = 1}|

|H||G|
,

(see [6] for more details). If H = G then the above probability is called n-
th commutativity degree and denoted by Pn(G). Furthermore, P1(G) =
d(G) which is called the commutativity degree. Assume

A = {(x, y) ∈ H ×G : [xn, y] = 1}

and B = {(x, y) ∈ H × G : [xn, y] = 1 and [yn, x] = 1}. In general
B ⊆ A so we can deduce

|E(ΓnH,G)| ≥ |H||G|(1− Pn(H,G))− |H|
2

2
(1− Pn(H)).

It is clear that if H = G then |E(ΓnG)| ≥ (|G|2 − |G|2Pn(G))/2.
An element x of a group G is called n-Bell, if [xn, y] = [x, yn] for all

y ∈ G. G is called n-Bell if all its elements are n-Bell. In this case
|A| = |B| so the bound for the number of edges is sharp. Furthermore,
for all nilpotent groups of class 2 we have |A| = |B|.

Every graph has at most m(m − 1)/2 edges, where m is the number
of vertices. Thus, for a nilpotent group of class 2 like G follows

Pn(G) ≥
2|CnG|
|G|

+
1

|G|
−
|CnG|2

|G|2
−
|CnG|
|G|2

.

If G1 and G2 are two nilpotent groups of class 2, |CnG1
| = |CnG2

| and
ΓnG1
' ΓnG2

then clearly Pn(G1) = Pn(G2).
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Proposition 3.1. Let G be a non-abelian group whose central factor is
an elementary abelian p-group of rank s where p is prime. If p does not
divide n then

|E(ΓnG)| ≥
(|G| − |CnG|)

2

(p− 1)|G|
p

Proof. Degree-edge formula 2|E(ΓnG)| =
∑

x∈V (Γn
G) deg(x), implies

2|E(ΓnG)| = (|G| − |CnG|)|G| −
∑

x∈V (Γn
G)

|CnG(x)|.

Moreover for every non-central element t ∈ G we have

ps = [G : Z(G)] = [G : CG(t)][CG(t) : Z(G)] ≤ [G : CG(t)]ps−1

Therefore, |CG(t)| ≤ |G|/p. Clearly, CnG(x) ⊆ CG(xn) and the assertion
follows. �

In the above theorem if p divides n there is no vertex for this graph.
Easily one can define a one to one correspondence map between CnG(x)
and CnG(xg) for g ∈ G. Thus, the degree of vertices of ΓnG in the same
conjugacy class are equal. By the fact that |CnG(x)| ≤ |CG(xn)| ≤ |G|/2
for an arbitrary vertex x, it follows that ΓnG is Hamiltonian graph.

Theorem 3.2. There is no relative n-th non-commuting complete graph
associated to an AC-group G.

Proof. Suppose ΓnH,G is a relative n-th non-commuting complete graph.

Therefore |G| − |CnG(h)| = |G| − |CnH,G| − 1 for a vertex h ∈ H. Con-

sequently |CnG(h)| = 2 and |h| = 2. Thus H is abelian so there is no
vertices in H which is a contradiction. �

By the same argument it follows that there is no n-th non-commuting
complete graph associated to an AC-group G.

Theorem 3.3. There is no n-th non-commuting complete graph ΓnG
associated to a non-abelian nilpotent group G of class 2 with CnG = 1.

Proof. Assume that we have such a graph. Thus Pn(G) = 3/|G|−2/|G|2.
On the other hand k(G)/|G| = d(G) ≤ Pn(G) where k(G) is number of
conjugacy classes (see [8]). Hence, k(G) ≤ 2 that implies G is an abelian
group, which is a contradiction. �

Theorem 3.4. There is no relative n-th non-commuting star graph as-
sociated to an AC-group G and its subgroup H.
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Proof. on the contrary suppose that ΓnH,G is the relative n-th non-commuting

star graph. Assume h ∈ H is the unique vertex of degree (|V (ΓnH,G)|−1).
Then we conclude that CnH,G = 1. On the other hand, for a vertex

g ∈ G \ H we have |CnH(g)| = |H| − 1 so [H : CnH(g)] = |H|/(|H| − 1)
which is impossible. Secondly, assume g ∈ G \ H is the unique vertex
of degree (|V (ΓnH,G)| − 1) and all the other vertices, for instance h ∈ H,

have degree 1. Then we have |G| = |CnG(h)|+ 1. Therefore, |CnH,G| = 1

and similarly, [G : CnG(h)] = |G|/(|G| − 1) which is impossible. Hence
such a graph does not exist. �

Furthermore, in Theorem 3.4 if G is an AC-group which is nilpotent
of class 2, then not only the associated n-th non-commuting graph is
not star but also there is no group with Pn(G) = 1 − 2/|G| + 4/|G|2
whenever |CnG| = 1.

Theorem 3.5. There is no n-th non-commuting complete bipartite graph
associated to an AC-group G.

Proof. Suppose ΓnG is an n-th non-commuting complete bipartite graph,
where vertices are partitioned in to two disjoint sets V1 and V2 such that
|V1| + |V2| = |G| − |CnG|. We should have deg(x) = |G| − |CnG(x)| ≤
(|G| − |CnG|)/2, |CnG|q = |CnG(x)| for some q ∈ Z and x ∈ V (ΓnG). Hence
|G| ≤ |CnG|(2q − 1) and so [G : CnG(x)] ≤ (2 − (1/q)) < 2 which is a
contradiction. �

We claim that there is no relative n-th non-commuting complete bipar-
tite graph. Otherwise, the only possibility is to have two disjoint sets V1

and V2 such that any of the sets V1, V2 contains vertices of H. Since all
vertices of H are not adjacent so if h ∈ V1 then [hn, x] = 1 and [xn, h] = 1
for all x ∈ H \CnH,G which implies that h ∈ CnH,G and it a contradiction.

We finish this section by some interesting results about the non-
regularity of the n-th non-commuting graph. Note that H is a non-trivial
proper subgroup of G.

Theorem 3.6. There is no relative n-th non-commuting m-regular graph
associated to an AC-group G, where m is an square free positive odd in-
teger.

Proof. Suppose ΓnH,G is a relative n-th non-commuting graph which is m-

regular and P = {p1, p2, · · · , pk} is the set of distinct odd primes which
factorizem. If h ∈ H is a vertex of the relative n-th non-commuting ΓnH,G
then m = deg(h) = |CnG(h)|([G : CnG(h)] − 1), |CnG(h)| =

∏
pi∈S

pi and
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([G : CnG(h)]− 1) =
∏

pj∈Sc
pj , where S and Sc are complement subsets

of P ∗ = P ∪{1} such that |CnG(h)| 6= 1. Thus |G| =
∏

pi∈S
pi(

∏
pj∈Sc pj+

1). By similar argument about the degree of a vertex belongs to G \
H it follows that |H| =

∏
pi∈T

pi(
∏
pj∈T c pj + 1), where T and T c are

complement subsets of P ∗. Since H is a subgroup of G we get that∏
pi∈T\T∩S

pi(
∏
pj∈T c pj + 1) divides (

∏
pj∈Sc pj + 1) which is impossible.

�

Theorem 3.7. The graph ΓnH,G associated to an AC-group G is not
2k-regular graph, where k is an square free positive odd integer.

Proof. By similar method of previous theorem, we obtain several cases
for the orders of H and G which none of them is valid. �

If ΓnH,G is a graph associated to an AC-group G of odd order then
the degrees of its vertices are even numbers. By Theorem 3.7 it is not
2k-regular graph, for an square free positive odd integer k. It is not 2r-
regular graph because otherwise we have 2r = |CnG(h)|([G : CnG(h)]− 1)
for h ∈ H ∩ V (ΓnH,G). Since |CnG(h)| 6= 1 it follows that |CnG(h)| =
2α, 1 ≤ α ≤ r and it is a contradiction. We guess ΓnH,G is not regular
at all when the order of G is odd.

4. n-th Non-commuting Graph and Isoclinism

We are going to attempt on a known conjecture which states that if
two isomorphic graphs are associated to the groups G and H, then the
groups G and H are isomorphic as well or at least their orders are equal.
We show that two non-abelian isoclinic groups under an extra condition,
are associated to some isomorphic graphs.

Proposition 4.1. Let G be a non-abelian AC-group and ΓnG
∼= ΓnS3

where n 6≡ 0 (mod 6). Then G ∼= S3.

Proof. By graph isomorphism |G| − |CnG| = |S3| − |CnS3
|. Obviously, if

n ≡ i (mod 6) for all 1 ≤ i ≤ 5 then CnS3
= 1 and |G| − |CnG| = 5.

Since G is an AC-group |CnG| | 5 so |CnG| is 1 or 5. If |CnG| = 5 then
|G| = 10 and this implies that G = D10. As ΓnS3

is not null it follows that
n 6≡ 0 (mod 10), because otherwise it is against the graph isomorphism.
If n ≡ j (mod 10), for all 1 ≤ j ≤ 9 then CnD10

= 1 and this is the
contradiction. Hence, |CnG| = 1 and result follows. �
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Proposition 4.2. Let G be a non-abelian AC-group and ΓnG
∼= ΓnD2m

where n is an odd number and m ≥ 4. Then |G| = |D2m|.

Proof. Suppose D2m = 〈a, b : am = b2 = 1, ab = a−1〉. First, suppose
that m is an odd number. By a simple computation on elements we can
find CnD2m

= 1 and so |G| − |CnG| = 2m− 1. Moreover, CnD2m
(b) = {e, b}

implies |G| − |CnG(b′)| = 2m− 2 for some element b′ ∈ G. Consequently,
|CnG(b′)| − |CnG| = 1. Hence, |CnG| = 1 and this completes the proof
in this case. Now, let m be an even number. By a similar method
as in the previous case, CnD2m

= {1, am/2} and so 2m − 2 = |G| − |CnG|.
Furthermore, by the fact that CnD2m

(b) = {e, b, am/2, am/2b} follows |G|−
|CnG(b′)| = 2m − 4, for some element b′ ∈ G. Consequently, |CnG(b′)| −
|CnG| = 2. Thus |CnG| is 1 or 2. It is easy to see that CnD2m

(a) =

{1, a, a2, · · · , am−1} and similarly we have m − 2 = |CnG(a′)| − |CnG| for
an element a′ ∈ G. Now, if |CnG| = 1 then |CnG(a′)| = m − 1. Since
G is an AC-group we should have m − 1 | |G| = 2m − 1 which is a
contradiction. Hence |G| = 2m as required. �

Hall [9] introduces the concept of isoclinism which is an equivalence
relation on the class of all groups.

Definition 4.3. Let G1 and G2 be two groups. Then the pair (α, β) is
called a n-isoclinism from G1 to G2 whenever

(i) α : G1/Zn(G1)→ G1/Zn(G1) is an isomorphism, where Zn(G1)
and Zn(G2) are the n-th term of the upper central series of G1

and G2, respectively.
(ii) β is an isomorphism from γn+1(G1) to γn+1(G2) with the law

[g11, · · · , g1 n+1] 7→ [g21, · · · , g2 n+1], where g2j ∈ α(g1jZn(G1)).
If there is such a pair (α, β) with the above properties then we
say that G1 and G2 are n-isoclinic and is denoted by G1 ñ G2.

If G1 and G2 are 1-isoclinic, then denote it by the abbreviate form
G1 ∼ G2 and is it called isoclinism (see [10] for more details).

Theorem 4.4. If G and H are two non-abelian groups which are iso-
clinic and |Z(H)| = |CnH | = |Z(G)| = |CnG|. Then ΓnG ' ΓnH .

Proof. Since Z(H) ⊆ CnH and Z(G) ⊆ CnG, we conclude that Z(H) =
CnH , Z(G) = CnG. There is an isomorphism φ : G/Z(G)→ H/Z(H) such
that giZ(G) 7→ hiZ(H) where {g1, · · · , gt}, {h1, · · · , ht} are transversal
sets for Z(G) and Z(H) in G and H, respectively. Furthermore, one
can define the bijection f : Z(H) = CnH → Z(G) = CnG and by using
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isomorphism φ we deduce |V (ΓnG)| = |V (ΓnH)|. Hence the map ψ :
G \CnG → H \CnH can be constructed such that x = giz 7→ hif(z) which
is well-defined bijection and preserves edges. �

Acknowledgments

The authors would like to thank the referee for some useful comments
and Ferdowsi University of Mashhad for its partial financial support
(grant No. MP91274ERF) of the research.

References

[1] A. Abdollahi, Engel graph associated with a group, J. Algebra 318 (2007), no.
2, 680–691.

[2] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group,
J. Algebra 298 (2006), no. 2, 468–492.

[3] A. Abdollahi and A. Mohammadi Hassanabadi, Noncyclic graph of a group,
Comm. Algebra 35 (2007), no. 7, 2057–2081.

[4] E. A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes
of groups, Bull. London Math. Soc. 22 (1990), no. 6, 569–575.
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