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SOME RESULTS ON BOUNDEDNESS IN LOCALLY
CONVEX CONES

A. RANJBARI* AND H. SAIFLU

Communicated by Fereidoun Ghahramani

Abstract. We characterize bounded sets and bounded operators
in locally convex cones. Also, we study some relations between
barreledness and boundedness in locally convex cones.

1. Introduction

The general theory of locally convex cones as developed in [1] deals
with preordered cones. We review some of the main concepts and refer
to [1] for details.

A cone is defined to be a commutative monoid C together with a
scalar multiplication by nonnegative real numbers satisfying the same
axioms as for vector spaces; that is, C is endowed with an addition
(x, y) 7→ x+y : C×C → C which is associative, commutative and admits
a neutral element 0 ∈ C, and with a scalar multiplication (r, x) 7→ r.x :
R+ ×C → C satisfying the usual associative and distributive properties,
where R+ is the set of nonnegative real numbers. We have 1x = x and
0x = 0, for all x ∈ C. A preordered cone, ordered cone for short, is a
cone with a preorder, that is, a reflexive transitive relation ≤ which is
compatible with the algebraic operations.
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Cones may occur as a subset of real vector spaces; such a subset C is a
cone if it satisfies 0 ∈ C, a, b ∈ C ⇒ a+b ∈ C and a ∈ C, r ∈ R+ ⇒ ra ∈ C.
Every product of (ordered) cones with pointwise addition and scalar
multiplication (and order) is again a(n ordered) cone. But unlike the
case for vector spaces, addition in cones need not satisfy the cancelation
property, in general, and cones need not be emeddable in vector spaces.
For example, R+ = R+∪{+∞} is an ordered cone that is not embeddable
in any vector space. Thus, our notion of a cone is more general than
that used in classical functional analysis.

For cones C and D, a mapping T : C → D is called a linear operator
if T (a + b) = T (a) + T (b) and T (αa) = αT (a) hold for a, b ∈ C and
α ≥ 0. A linear functional on C is a linear operator µ : C → R, where
R = R ∪ {+∞}.

A subset V of a preordered cone C is called an abstract 0-neighborhood
system, if the following properties hold:

(v1) 0 < v for all v ∈ V;

(v2) for all u, v ∈ V, there is a w ∈ V with w ≤ u and w ≤ v;

(v3) u + v ∈ V and αv ∈ V, whenever u, v ∈ V and α > 0.
For every a ∈ C and v ∈ V, we define,

v(a) = {b ∈ C : b ≤ a + v}, resp. (a)v = {b ∈ C : a ≤ b + v},

to be a neighborhood of a in the upper, resp. lower, topologies on C.
Their common refinement is called symmetric topology. We denote the
neighborhoods of the symmetric topology as v(a) ∩ (a)v or v(a)v for
a ∈ C and v ∈ V. We call (C,V) a full locally convex cone, and each
subcone of C, not necessarily containing V, is called a locally convex
cone. For technical reasons, we require the elements of a locally convex
cone to be bounded below; i.e., for every a ∈ C and v ∈ V we have
0 ≤ a + ρv, for some ρ > 0. An element a of (C,V) is called bounded if
it is also upper bounded; i.e., for every v ∈ V, there is a ρ > 0 such that
a ≤ ρv.

For locally convex cones C and D, with (abstract) 0-neighborhood
systems V andW, respectively, T : C → D is called uniformly continuous
(u-continuous) if for every w ∈ W, there is a v ∈ V such that T (a) ≤
T (b) + w, whenever a ≤ b + v.

Endowed with the (abstract) 0-neighborhood system ε = {ε ∈ R : ε >
0}, R is a full locally convex cone. The u-continuous linear functionals



Some results on boundedness in locally convex cones 51

on the locally convex cone (C,V) form a cone with the usual addition
and scalar multiplication of functions. This cone is called the dual cone
of C and denoted by C∗.

For a locally convex cone (C,V), the polar v◦ of v ∈ V consists of all
linear functionals µ on C satisfying µ(a) ≤ µ(b)+1, whenever a ≤ b+ v,
for a, b ∈ C. We have C∗ = ∪{v◦ : v ∈ V}.

Here, in Section 2 we study the bounded sets and bounded operators
in locally convex cones. We give counterexamples for some properties
of the topological vector spaces which are not satisfied for the locally
convex cones. In section 3, we verify some relations between bounded
sets and barrels.

2. Bounded sets and bounded operators

Definition 2.1. A set E in a locally convex cone (C,V) is called bounded
if every symmetric neighborhood of 0 absorbs E; that is, for each v ∈ V,
there is a λ > 0 such that E ⊆ λv(0)v.

This definition is equivalent to the one in [4]: E ⊂ (C,V) is bounded
if for every v ∈ V, there is a λ > 0 such that

0 ≤ a + λv and a ≤ λv,

for all a ∈ E.
If we consider ṽ = {(a, b) ∈ C × C : a ≤ b + v}, we can state the

definition of a bounded set by ṽ: for every v ∈ V, there is a λ > 0 such
that

(0, a) , (a, 0) ∈ λṽ,

for all a ∈ E (cf. [3]).
E ⊆ (C,V) is called internally bounded if for every v ∈ V, there is a

λ > 0 such that
a ≤ b + λv or (a, b) ∈ λṽ

for all a, b ∈ E (cf. [4]).

Proposition 2.2. In a locally convex cone (C,V), we have,
(i) subsets of (internally) bounded sets are (internally) bounded;
(ii) finite unions of (internally) bounded sets are (internally) bounded;
(iii) finite sums and positive scalar multiples of (internally) bounded

sets are (internally) bounded.
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Proof. Parts (i) and (ii) are clear, as is the boundedness of scalar
multiples of bounded sets. Let E1, . . . , En ⊆ C be bounded, and v ∈ V.
Let e1 + · · ·+ en ∈ E1 + · · ·+En. For each i = 1, . . . , n, there is a λi > 0
such that

0 ≤ ei + λiv and ei ≤ λiv,

for all ei ∈ Ei. Put λ = λ1 + · · ·+ λn. We have,

0 ≤ e1 + · · ·+ en + λv and e1 + · · ·+ en ≤ λv.

�

Proposition 2.3. Let (C,V) be a locally convex cone and E be a subset
of C. If E is (internally) bounded, then E, the closure of E (w.r.t. the
symmetric topology), is also (internally) bounded.

Proof. Let E be bounded, x ∈ E and v ∈ V. There is an e ∈ E such
that e ∈ v(x)v; that is,

e ≤ x + v and x ≤ e + v.

On the other hand, since E is bounded, then there is a λ > 0 such that

0 ≤ e + λv and e ≤ λv.

So, we have,

0 ≤ x + (λ + 1)v and x ≤ (λ + 1)v.

This means that E is bounded. The internally bounded case is similarly
proved. �

For a set E in the locally convex cone (C,V) which contains 0, bound-
edness and internally boundedness is the same. Indeed, if E is bounded,
then E is internally bounded, since by the boundedness of E, for every
v ∈ V, there is a λ > 0 such that

0 ≤ e + λv and e ≤ λv,

for all e ∈ E. Now, if x, y ∈ E are arbitrary, then we have,

0 ≤ y + λv and x ≤ λv.

Thus, we have,
x ≤ y + 2λv,
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for all x, y ∈ E; i.e., E is internally bounded. On the other hand, if E is
internally bonded and contains 0, for every v ∈ V, there is a λ > 0 such
that

x ≤ y + λv,

for all x, y ∈ E. If we put x = 0, then 0 ≤ y + λv, for all y ∈ E. Also,
by putting y = 0, we have x ≤ λv, for all x ∈ E. So,

0 ≤ e + λv and e ≤ λv,

for all e ∈ E, and this shows that E is bounded. But, it is not necessary
that each internally bounded set is bounded. For example, E = {+∞}
is internally bounded in R with (abstract) 0-neighborhood system ε =
{ε > 0 : ε ∈ R}, but it is not bounded. On the other hand, we have
the following result.

Theorem 2.4. If E is an internally bounded set in the locally convex
cone (C,V) and E (the closure of E) has a bounded element, then E is
bounded.

Proof. Let v ∈ V be arbitrary and x ∈ E be a bounded element. There
is a λ > 0 such that

0 ≤ x + λv and x ≤ λv.

On the other hand, since x ∈ E, then there exists y ∈ E such that

y ≤ x + v and x ≤ y + v.

Now, let e ∈ E be arbitrary. Since E is internally bounded, then there
is a λ′ > 0 such that

y ≤ e + λ′v and e ≤ y + λ′v.

We have,

0 ≤ e + (λ + λ′ + 1)v and e ≤ (λ + λ′ + 1)v.

�

A sequence {xn} in the locally convex cone (C,V) converges to an
element x ∈ C, with respect to the symmetric topology, if for every
v ∈ V, there is a positive integer n0 such that

xn ≤ x + v and x ≤ xn + v,

for all n > n0. In this case, we write xn → x.
The convergence of nets in the locally convex cones is defined similarly.
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Proposition 2.5. If {xn} is a sequence in C such that xn → x and xn

is bounded for a sufficiently large n, then x is bounded.

Proof. Let v ∈ V be arbitrary. There is a positive integer n0 such that

xn ≤ x + v and x ≤ xn + v,

for all n > n0. Let n > n0 be such that xn is bounded. There is a λ > 0
such that

0 ≤ xn + λv and xn ≤ λv.

We have,
0 ≤ x + (λ + 1)v and x ≤ (λ + 1)v.

�

Remark 2.6. It is straightforward to see that if xn → x and xn is
bounded for some sufficiently large n, then xm is bounded for every
m > n.

Let (C,V) be a locally convex cone. A sequence {xn} in C is a Cauchy
sequence if for every v ∈ V there corresponds a positive integer n0 such
that xn ≤ xm + v, whenever m > n0 and n > n0. It is clear that each
convergent sequence is Cauchy.

Proposition 2.7. If {xn} is a Cauchy sequence in C, then there is an
n0 such that the set {xn : n > n0} is internally bounded.

Proof. Straightforward. �

Corollary 2.8. If {xn} is a sequence in the locally convex cone (C,V)
which is convergent to a bounded element, then there is an n0 such that
E = {xn : n > n0} is (internally) bounded.

Proof. By Proposition 2.7, E is internally bounded and by Proposition
2.4 is bounded. �

Remark 2.9. (i) If we consider R with (abstract) 0-neighborhood sys-
tem V = {+∞}, then for each v ∈ V, we will have v(0)v = R; that is,
R and (so) every subcone of R is bounded. On the other hand, we may
have many unbounded elements in locally convex cones. For example,
if we consider Conv(R) = {A ⊆ R : A is convex} with set inclusion
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as preorder and V = {(−α, α) : α > 0} as (abstract) 0-neighborhood
system, then all elements like (−∞, α) and (α, +∞), where α ∈ R, are
unbounded in Conv(R).

(ii) In locally convex cones, it is not necessary that compact sets and
so the precompact sets be bounded. For instance, {0,+∞} is a compact
(and so precompact) set in (R, ε), but it is not (internally) bounded.

Proposition 2.10. Let (C,V) be a locally convex cone and E be a subset
of C. The following properties are equivalent:

(i) E is bounded.
(ii) If {xn} is a sequence in E and {αn} is a sequence of (nonnega-

tive) scalars such that αn → 0 as n → +∞, then αnxn → 0 as
n → +∞.

Proof. Suppose E is bounded and v ∈ V. There is a λ > 0 such that
E ⊆ λv(0)v. If xn ∈ E and αn → 0, then there exists an n0 such that
αnλ < 1, for all n > n0. Since 1

λE ⊆ v(0)v, then αnxn ∈ v(0)v, for all
n > n0. Thus, αnxn → 0.

Conversely, if E is not bounded, then there is a v ∈ V such that
E * nv(0)v, for all n ∈ N. Choose xn ∈ E such that xn /∈ nv(0)v.
Then, 1

nxn 9 0, but 1
n → 0. �

Now, we verify some properties of bounded operators.
Suppose T is a linear mapping of locally convex cone C into another lo-

cally convex cone D. We shall say that T is bounded (internally bounded)
if T maps bounded (internally bounded) subsets of C into bounded (in-
ternally bounded) subsets of D.

Proposition 2.11. Let (C,V) and (D,W) be locally convex cones and
T : C → D be a linear operator. If T is (internally) bounded and xn → x
(under the symmetric topology) and x is bounded, then {Txn : n > n0}
is bounded for some n0.

Proof. By Corollary 2.8, there is an n0 such that {xn : n > n0} is
bounded and then {Txn : n > n0} is bounded. �

Proposition 2.12. Let (C,V) and (D,W) be locally convex cones and
T be a linear operator from C into D. Among the three properties of T
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listed below, the implications

(a) → (b) → (c),

hold:

(a) T is bounded in some neighborhood of 0 in the symmetric topol-
ogy.

(b) T is continuous at 0.
(c) T is bounded.

Furthermore, if C has a bounded neighborhood of 0, then (c) → (a).

Proof. We prove only (a) → (b). The other implications are easy. Let
w ∈ W be arbitrary. By the assumption (a), there is a v ∈ V such
that T (v(0)v) is bounded in (D,W). Then, there is a λ > 0 such that
T (v(0)v) ⊆ λw(0)w; i.e., T ( v

λ(0) v
λ) ⊆ λw(0)w. This shows that T is

continuous at 0. �

Corollary 2.13. If T is u-continuous, then T is (internally) bounded.

Proof. U-continuity implies continuity with respect to the symmetric
topology. �

Let T be a linear mapping from the cone C into another cone D. The
set,

T−1(0) = {p ∈ C : Tp = 0} = N (T ),

is a subcone of C, called the null cone of T .

Proposition 2.14. Let (C,V) be a locally convex cone and T be a linear
functional on C such that Tp 6= 0, for some p ∈ C. Among the three
properties of T listed below, the implications,

(a) → (b) → (c),

hold:
(a) T is continuous on C.
(b) The null cone N (T ) is closed.
(c) N (T ) is not dense in C.

Proof. Straightforward. �
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Remark 2.15. (i) For topological vector spaces, continuity at 0 implies
continuity at the other points, but for locally convex cones, this is not
true. We give a counter example next.

Let C be the cone of all finite convex subsets of R. We can consider
C as a subcone of Conv(R). Indeed, C = {{a} , {a,+∞} : a ∈ R}. We
consider the preorder of Conv(R) as A ≤ B if and only if for every a ∈ A,
there is a b ∈ B such that a ≤ b, and V = {{ε} : ε > 0 and ε ∈ R} is
an (abstract) 0-neighborhood system for C. Let T : C → R be defined
as T (A) = inf(A). T is a linear functional which is continuous at {0}
with respect to the symmetric topology. Indeed, if ε > 0 is arbitrary, by
considering 0 < δ ≤ ε, we have,

{δ}({0}){δ} = {{a} : 0 ≤ a + δ and a ≤ δ},
and then,

T ({δ}({0}){δ}) ⊆ ε(0)ε.
But T is not continuous at {0,+∞}, since

{δ}({0,+∞}){δ} = {{a,+∞} : a ∈ R},
for all δ > 0 and

T ({δ}({0,+∞}){δ}) = R
which is not a subset of 1(0)1 (for ε = 1).

(ii) If T is bounded, or T is continuous (only) at 0, then it is not
necessary that N (T ) be closed. For, if we consider (C,V) and T as in
(i), then T is continuous at 0, and so bounded by Proposition 2.12, but
N (T ) = {{0} , {0,+∞}} is not closed in C. Indeed, for all a ∈ R,
{a,+∞} is in the closure of N (T ) (w.r.t. the symmetric topology).

Also, N (T ) is not dense in C, for this example. Hence, (c) → (a) is
not true in Proposition 2.14.

Remark 2.16. Let (C,V) be the projective limit of the locally convex
cones (Cγ ,Vγ)γ∈Γ by the mappings gγ as studied in [3]. We saw that
a subset A of C is bounded if and only if each gγ(A) is bounded ([3],
Proposition 2.5). Also, we gave the product of the locally convex cones
(Cγ ,Vγ) as an example of the projective limit ([3], Example 2.8). Hence,
×Aγ ⊆ ×Cγ is bounded if and only if each Aγ is bounded. Also, in [3] we
have defined and studied the inductive limit of a family of locally convex
cones (Cγ ,Vγ)γ∈Γ by the mappings fγ . Since fγ : Cγ → C is u-continuous
for each γ ∈ Γ, hence if Aγ ⊆ Cγ is bounded, then fγ(Aγ) ⊆ C is bounded.
The quotient cone is introduced and studied in [2] separately, and as an
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example of inductive limit in [3]. So, the quotient of a bounded set is
bounded.

In the remainder of this section, we investigate the image of a bounded
set by a continuous homogeneous function.

Theorem 2.17. Let (C,V) and (D,W) be locally convex cones. Let
f : C → D (not necessarily linear) be continuous at 0 and

f(λx) = λrf(x),

for some r > 0, for all λ > 0 and x ∈ C. If B is a bounded subset of C,
then the image of B under f is a bounded subset of D.

Proof. Let w ∈ W. There is a v ∈ V such that f(v(0)v) ⊆ w(0)w (it
is clear that f(0) = 0). Since B is bounded, then there is a λ > 0 such
that B ⊆ λv(0)v. Then,

f(B) ⊆ f(λv(0)v) = λrf(v(0)v) ⊆ λrw(0)w,

that is, f(B) is bounded. �

3. Boundedness and barreledness

In [4], a barrel and a barreled cone have been defined as follows.

Definition 3.1. Let (C,V) be a locally convex cone. A barrel is a convex
subset B of C2 with the following properties:

(B1) For every b ∈ C, there is a v ∈ V such that for every a ∈ v(b)v,
there is a λ > 0 such that (a, b) ∈ λB.

(B2) For all a, b ∈ C such that (a, b) /∈ B, there is a µ ∈ C∗ such that
µ(c) ≤ µ(d) + 1, for all (c, d) ∈ B and µ(a) > µ(b) + 1.

Definition 3.2. A locally convex cone (C,V) is said to be barreled if
for every barrel B ⊆ C2 and every b ∈ C there is a v ∈ V and a λ > 0
such that (a, b) ∈ λB, for all a ∈ v(b)v.

Also, an upper-barreled cone is defined in [3] as follows.

Definition 3.3. Let (C,V) be a locally convex cone. C is called upper-
barreled if for every barrel B ⊆ C2, there is a v ∈ V such that ṽ ⊆ B.
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An upper-barreled cone is a barreled cone but the converse is not true
(see [3], for more conditions).

Let (C,V) and (D,W) be two locally convex cones. Then, C × D =
{(a, b) : a ∈ C, b ∈ D} is a pre-ordered cone with

(a, b) ≤ (a′, b′) if and only if a ≤ a′ and b ≤ b′.

We consider V × W = {(v, w) : v ∈ V, w ∈ W} as an (abstract) 0-
neighborhood system for C × D.

In the locally convex cone (C,V), it is not necessary that a barrel,
as defined above, be bounded in C × C. This is in every locally convex
cone (C,V), which is tightly covered by its bounded elements; i.e., for all
a, b ∈ C and v ∈ V and a /∈ v(b) (or a � b + v), there is some bounded
element a′ ∈ C such that a′ � a and a′ /∈ v(b) (see II.2.13 of [1]), ṽ is
a barrel (cf. [3]), and so 1̃ = {(a, b) : a ≤ b + 1} is a barrel in (R, ε),
but clearly it is not bounded in (R × R, ε × ε). On the other hand, as
described following Lemma 2.2 in [4], in a barreled locally convex cone,
E × {e} ⊆ λB holds for every internally bounded set E, every e ∈ E
and every barrel B with some λ > 0. Also, for bounded sets we have
the following result.

Theorem 3.4. Let (C,V) be a locally convex cone, and E a bounded set
of C. Then, we have:

(i) If C is barreled, then every barrel absorbs E × {0}.
(ii) If C is upper-barreled, then every barrel absorbs E × {0} and

{0} × E.

Proof. Let B ⊆ C2 be a barrel. For (i), since (C,V) is barreled, then
there exist a neighborhood v ∈ V and λ > 0 such that (a, 0) ∈ λB, for
all a ∈ v(0)v. On the other hand, E is bounded, and thus, there exists
λ′ > 0 such that E ⊆ λ′v(0)v. We have E × {0} ⊆ (λ + λ′)B (B is
convex). For (ii), from upper-barreledness of (C,V), there exists a v ∈ V
such that ṽ ⊆ B. Also, from boundedness of E, there exists η > 0 such
that

(0, a) ∈ ηṽ and (a, 0) ∈ ηṽ,

for all a ∈ E; that is,

E × {0} ⊆ ηB and {0} × E ⊆ ηB.

�
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We do not know whether generally in a locally convex cone (C,V), a
barrel absorbs E × {0} or {0} × E , where E is a bounded set in C.
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