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BIFURCATION OF LIMIT CYCLES FROM A

QUADRATIC REVERSIBLE CENTER WITH THE

UNBOUNDED ELLIPTIC SEPARATRIX
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Communicated by Maryam Mirzakhani

Abstract. The paper is concerned with the bifurcation of limit cy-
cles in general quadratic perturbations of a quadratic reversible and
non-Hamiltonian system, whose period annulus is bounded by an
elliptic separatrix related to a singularity at infinity in the Poincaré
disk. Attention goes to the number of limit cycles produced by
the period annulus under perturbations. By using the appropri-
ate Picard-Fuchs equations and studying the geometric properties
of two planar curves, we prove that the maximal number of limit
cycles bifurcating from the period annulus under small quadratic
perturbations is two.

1. Introduction

In [23], a classification is given for quadratic integrable systems with
at least one center. Following [12], such systems can be put into five
classes in the complex form:

(1) ż = −iz − z2 + 2|z|2 + (b+ ic)z̄2, Hamiltonian(QH3 ),
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(2) ż = −iz + az2 + 2|z|2 + bz̄2, reversible (QR3 ),

(3) ż = −iz + 4z2 + 2|z|2 + (b + ic)z̄2, |b + ic| = 2, codimension
four(Q4),

(4) ż = −iz + z2 + (b+ ic)z̄2, generalized Lotka-Volterra (QLV3 ),

(5) ż = −iz + z̄2, Hamiltonian triangle,
where a, b and c stand for arbitrary real constants.

A quadratic integrable system is called generic if it belongs to one
of the first four class and does not belong to other integrable class.
Otherwise, it is called degenerate.

Generally, limit cycles arising from a quadratic center are those from
either the center itself, or the period annulus surrounding it, or the
seperatrix cycle which bounds the period annulus in the Poincaré disk.
As usual, we use the notion of cyclicity (see Definition 2.2) for the
total number of limit cycles which can emerge from a configuration of
trajectories (center, period annulus, seperatrix cycle or singular loop)
under perturbations. The problem of the cyclicity of the center point
itself was completely solved by Bautin in the early 1950’s (see [1]). The
bifurcation of limit cycles from saddle-loop in perturbations of quadratic
Hamiltonian systems has been studied in [11]. Moreover, if the loop
contains only one saddle and certain genericity conditions hold, it was
proved in [18] that the cyclicity of a singular loop can be transferred to
the cyclicity of the period annuli. However, if the loop contains at least
two saddles, this transfer in general is not true. For more details, we
refer to [17] and references therein.

The present paper is devoted to studying the number of limit cycles
produced by the period annulus of a generic quadratic reversible center
with an unbounded elliptic separatrix under small perturbations. As is
well known, the maximal number of limit cycles bifurcating from one
period annulus under perturbations is less than or equal to the exact
upper bound of zeros of the associated Abelian integral. Therefore the
study of the number of limit cycles from the period annulus under per-
turbations can be transferred to counting the number of isolated zeros
of the associated Abelian integral.

For quadratic Hamiltonian systems with quadratic perturbations, the
exact upper bound of the number of zeros of the associated Abelian inte-
grals is 2, see [4,7,10,16,24]. It is well known that the orbital topological
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properties of quadratic reversible systems under quadratic perturbations
are very rich and hence this case is very interesting. For some results
concerning the quadratic perturbations from the reversible systems, we
refer to [2, 3, 5, 6, 13, 14, 19–22] and references therein. However, known
results are very limited.

Recently, Gautier et al [9] proved that there are 18 classes of reversible
centers of genus one, whose phase portraits contain only elliptic curves.
In the present paper, we take the following generic reversible system

ẋ = y + 4x2,

ẏ = −x(1− 6y)(1.1)

from [9] and investigate the bifurcation of limit cycles from its period
annulus under small quadratic perturbations.

By taking the change (x, y) → (y,−x), system (1.1) is transformed
into

ẋ = y(1 + 6x),

ẏ = −x+ 4y2,(1.2)

which has a first integral of the form

H∗(x, y) = (1 + 6x)−
4
3 (

1

2
y2 − 1

12
(1 + 6x) +

1

48
) = h

with the integrating factor (1 + 6x)−7/3.
From [12], it is easy to know that the Abelian integral related to

system (1.2) under small quadratic perturbations is the following

I(h) = αI∗0 (h) + βI∗1 (h) + γI∗−1(h),

where the elliptic integrals I∗k(h) =
∮
H∗(x,y)=h(1 + 6x)k−7/3ydx, k =

0, 1,−1. α, β and γ are any real constants.
After making the change (x, y, t) → ((X − 1)/6, Y, τ/6) and writing

(x, y, t) instead of (X,Y, τ), we get the equivalent system of system (1.2)

ẋ = xy,

ẏ =
2

3
y2 − 1

36
x+

1

36
(1.3)

with a first integral of the form

H(x, y) = x−
4
3 (

1

2
y2 − 1

12
x+

1

48
) = h
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and the corresponding integrating factor x−7/3. At the same time, the
associated Abelian integral can be expressed as follows

I(h) = αI0(h) + βI1(h) + γI−1(h),

where Ik(h) =
∮
H(x,y)=h x

k−7/3ydx, k = 0, 1,−1. α, β and γ are the same

as above.
As usual in this theory, we derive the closed Picard-Fuchs equations,

then get the related differential equation of P (h) = I1(h)/I0(h), Q(h) =
I−1(h)/I0(h) and R(h) = I−1/3(h)/I0(h), which is in fact not easy to
deal with. In addition to this, since the outer boundary of the period
annulus of system (1.3) is an elliptic separatrix Γ0 (see section 2) related
to a singularity at infinity, we must use some other method to compute
the asymptotic expansion of Ik(h) with k = 0, 1,−1 and −1/3 near the
boundary. In the present paper, we first define the functions ν(h) =
I ′′−1(h)/I ′′0 (h) and ω(s) = ν(h)(s = h3), then make an intensive study
of the properties of two curves Σ = {(P,Q)(h) : h ∈ (−1/16, 0)} and
Cω = {(s, ω(s)) : s ∈ (−1/4096, 0)}. Using the related Picard-Fuchs
equations, Ricatti equations and other techniques, we prove the main
result of this paper.

Theorem 1.1. Under small quadratic perturbations, at most two limit
cycles can bifurcate from the period annulus of system (1.3), and this
bound is sharp.

Recall that the maximal number of limit cycles arising from the period
annulus of system (1.3) under small quadratic perturbations is also called
the cyclicity of the period annulus under the perturbations. Theorem
1.1 implies the following result.

Theorem 1.2. The cyclicity of the period annulus of system (1.3) under
small quadratic perturbations is equal to two.

Theorem 1.2 is just Conjecture 1 for (1.1) in [9]. Hence this paper
can be regarded as a part of verifying the conjecture.

Two points should be stressed. First of all, we study the Abelian
integral I(h) related to one-parameter perturbations of system (1.1), and
thus the cyclicity of the period annulus under one-parameter quadratic
perturbations is two. However, the result will be the same for multi-
parameter perturbations. In fact, let Xλ be a family of analytic plane
vector fields depending analytically on a parameter λ ∈ (Rk, 0), also
called a k-parameter deformation of X0. It follows from Theorem 1
in [8] that for any k-parameter deformation Xλ about which the compact
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invariant set of X0 has finite cyclicity, there exists a germ of analytic
curve ε → λ(ε), ε ∈ (R, 0), λ(0) = 0 such that the cyclicity of the
compact invariant set of X0 with respect to the deformation Xλ is the
same as that with respect to Xλ(ε), which is one-parameter deformation
of X0. Second, the Abelian integral in the present paper includes all
possible higher-order Melnikov functions, as explained in [9]. This allows
to study cyclicity in general.

2. Outline of the proof of Theorem 1.1

System (1.3) has an invariant line x = 0. A unique finite singular
point (1, 0) is a center. The singularities at infinity in x- direction are a
pair of degenerate ones, while the singularities at infinity in y- direction
are a pair of saddles.

The period annulus is formed by the closed orbits

Γh : {(x, y) : x−
4
3 (

1

2
y2 − 1

12
x+

1

48
) = h}, h ∈ (− 1

16
, 0).

Γh shrinks to the center (1, 0) as h → −1/16, while Γh expands to an
unbounded elliptic separatrix Γ0 as h→ 0, see Figure 1.

x

y

O

0

Figure 1. The phase portrait of system (1.3) in the
Poincaré disk

Theorem 3 of [12] directly gives the following result.
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Lemma 2.1. The exact upper bound for the number of limit cycles pro-
duced by the period annulus of system (1.3) under quadratic perturba-
tions is equal to the maximal number of zeros (counting multiplicities)
of the following Abelian integral

I(h) = αI0(h) + βI1(h) + γI−1(h)(2.1)

in h ∈ (−1/16, 0), where Ik(h) =
∮

Γh
xk−7/3ydx with k = 0, 1 and

−1. α, β and γ are any real constants.

For convenience, we give some definitions.

Definition 2.2. (see [8]) Let Xλ be a family of analytic real plane vector
fields depending analytically on a parameter λ ∈ (Rn, 0), and let K ⊂ R2

be a compact invariant set of Xλ0. We say that the pair (K,Xλ0) has
cyclicity N = Cycl(K,Xλ0) with respect to the deformation Xλ, provided
that N is the smallest integer having the properties: there exists ε0 > 0
and a neighborhood VK of K, such that for every λ, such that ‖λ−λ0‖ <
ε0, the vector field Xλ has no more than N limit cycles contained in VK .

Definition 2.3. For h ∈ (−1/16, 0), define

ϕ(h) = −2(−h)
1
2 ((−h)

1
2 I(h))′, ϕ̃(h) = 192h3(

ϕ(h)

h
)′,

P (h) =
I1(h)

I0(h)
, Q(h) =

I−1(h)

I0(h)
, R(h) =

I− 1
3
(h)

I0(h)
,

υ(h) =
I ′′−1(h)

I ′′0 (h)
,

where I−1/3(h) =
∮

Γh
x−8/3ydx, I0(h), I1(h) and I−1(h) are the same as

before, and I0(h) 6= 0, I ′′0 (h) 6= 0, see section 3 for details.
Let s = h3, then for s ∈ (−1/4096, 0), define ω(s) = υ(h).

Definition 2.4. We call Σ = {(P,Q)(h) : h ∈ (−1/16, 0)} the centroid
curve, and Cω = {(s, ω(s)) : s ∈ (−1/4096, 0)} the auxiliary curve,
where ω(s) is defined as before.

Remark 2.5. The definition of the centroid curve here is different from
the one in [10]. For convenience, we also call it the centroid curve.

For proving Theorem 1.1, we need the following four theorems.

Theorem 2.6. The functions P (h), Q(h) and the curve
∑

satisfy the
following properties.
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(1) For h ∈ (−1/16, 0), we have P ′(h) > 0;
(2) The centroid curve

∑
has the same concavity near the two end-

points, which means d2Q/dP 2 < 0 for 0 ≤ h + 1/16 � 1 and
0 < −h� 1.

Theorem 2.7. For s ∈ (−1/4096, 0), the auxiliary curve Cω is globally
convex.

Theorem 2.8. For h ∈ (−1/16, 0), the function ϕ̃(h) has at most two
zeros, taking into account the multiplicities, where ϕ̃(h) is defined as
above.

Theorem 2.9. For h ∈ (−1/16, 0), the Abelian integral I(h) defined by
(2.1) has at most two zeros, taking into account the multiplicities, and
I(h) can have exactly two zeros for some constants α, β and γ.

Theorem 1.1 follows from Lemma 2.1 and Theorem 2.9 immediately.
The rest of this paper is organized as follows. In section 3, we will de-

rive the closed Picard-Fuchs equations satisfied by Ik(h) =
∮

Γh
xk−7/3ydx

with k = 0, 1,−1,−1/3, and Riccati equations by v(h) = I ′′−1(h)/I ′′0 (h) =
ω(s). In section 4, by using the differential equations on h, P,Q and R,
and computing the asymptotic expansion of the elliptic integrals Ik(h)
with k = 0, 1,−1 and −1/3 near h = 0, we study the properties of the
centroid curve

∑
and prove Theorem 2.6. After taking a qualitative

analysis of the Riccati equation satisfied by ω(s), the global convexity
of the auxiliary curve Cω is gotten in section 5. This finishes the proof
of Theorem 2.7. At the same time, we also get the monotonicity of
Cω. Theorem 2.8 is proven in section 6. In the last section, we prove
Theorem 2.9, then Theorem 1.1 will be verified.

3. The Picard-Fuchs equations and Riccati equations

Lemma 3.1. Suppose J(h) = [I0(h), I1(h), I−1(h), I−1/3(h)]T , then

(3.1) J(h) = M(h)J ′(h),

where

M(h) =


h 0 0 1

16
0 −2h 0 −1

8
6
7h 0 4

7h
5
56

− 1
160h 0 1

320h
4
5h

 .
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Proof. Recall that the first integral of system (1.3) is

(3.2) H(x, y) = x−
4
3 (

1

2
y2 − 1

12
x+

1

48
) = h, h ∈ (− 1

16
, 0).

Differentiating (3.2) with respect to h and x respectively, we get

∂y

∂h
=
x

4
3

y
,

∂y

∂x
=

4
3hx

1
3 + 1

12

y
.

It is easy to know that

(3.3) I ′k(h) =

∮
Γh

xk−
7
3
∂y

∂h
dx =

∮
Γh

xk−1

y
dx > 0.

From (3.2) and (3.3), we have

Ik(h) =

∮
Γh

xk−
7
3 y2

y
dx =

∮
Γh

xk−
7
3 (2hx

4
3 + 1

6x−
1
24)

y
dx

= 2hI ′k(h) +
1

6
I ′
k− 1

3

(h)− 1

24
I ′
k− 4

3

(h).(3.4)

On the other hand, when k 6= 4/3, by integrating by parts, we get

Ik(h) =

∮
Γh

xk−
7
3 ydx =

1

k − 4
3

∮
Γh

ydxk−
4
3

= − 1

k − 4
3

∮
Γh

xk−
4
3

4
3hx

1
3 + 1

12

y
dx

= − 4

3k − 4
hI ′k(h)− 1

4(3k − 4)
I ′
k− 1

3

(h).(3.5)

Removing I ′k−1/3(h) and Ik(h) from (3.4) and (3.5) respectively, we

obtain

(3.6) Ik(h) = − 2

6k − 5
hI ′k(h)− 1

8(6k − 5)
I ′
k− 4

3

(h).

(3.7) 24(6k−4)hI ′k(h)+2(6k−5)I ′
k− 1

3

(h)−(3k−4)I ′
k− 4

3

(h) = 0, k 6= 4

3
.

Taking k = 0, k = −1 and k = −1/3 in (3.5), k = 1 in (3.6), and
k = 2/3, k = 1/3 and k = 0 in (3.7) respectively, the following equalities
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hold.

I0(h) = hI ′0(h) +
1

16
I ′− 1

3

(h),

I−1(h) =
4

7
hI ′−1(h) +

1

28
I ′− 4

3

(h),

I− 1
3
(h) =

4

5
hI ′− 1

3

(h) +
1

20
I ′− 2

3

(h),

I1(h) = −2hI ′1(h)− 1

8
I ′− 1

3

(h),

I ′− 2
3

(h) = I ′1
3

(h),

I ′1
3

(h) =
1

16h
(I ′−1(h)− 2I ′0(h)),

1

28
I ′− 4

3

(h) =
6

7
hI ′0(h) +

5

56
I ′− 1

3

(h).(3.8)

Let

J(h) = (I0(h), I1(h), I−1(h), I− 1
3
(h))T ,

then (3.1) follows from (3.8). This finishes the proof of Lemma 3.1. �

Moreover, differentiating (3.1) with respect to h, we get

(3.9) G(h)J ′′(h) = M1(h)J ′(h),

where

G(h) = 4h(1 + 4096h3),

M1(h) =


2 0 −1 −256h2

2 −24576h3 − 6 −1 −256h2

−24576h3 − 4 0 2 + 12288h3 −256h2

−32h 0 16h 4096h3

 .
Remark 3.2. For h ∈ (−1/16, 0), the following results are easily ob-
tained.

(1) The definitions yield that

Ik(h) =

∮
Γh

xk−7/3ydx > 0

with k = 0, 1,−1 and −1/3.
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(2) From Lemma 3.1 and equation (3.9), we have

G(h)I ′′0 (h) = −320h2I− 1
3
(h) < 0,

which implies that

I ′′0 (h) < 0.

Lemma 3.3. The function ν(h) = I ′′−1(h)/I ′′0 (h) satisfies the following
Riccati equation

12h(1 + 4096h3)ν ′ = −5ν2 + 8(9216h3 − 1)ν + (4− 110592h3).
Proof. Differentiating the first, third and fourth equations of (3.1) with
respect to h respectively, we get

I ′′− 1
3

(h) = −16hI ′′0 (h),

I ′−1(h)− 2I ′0(h) =
4

3
hI ′′−1(h) + 2hI ′′0 (h) +

5

24
I ′′− 1

3

(h),

I ′− 1
3

(h) = 4hI ′′− 1
3

(h)− 1

64h2
(I ′−1(h)− 2I ′0(h))(3.10)

+
1

64h
(I ′′−1(h)− 2I ′′0 (h)),

which implies that

I ′− 1
3

(h) =
(−2− 12288h3)I ′′0 (h)− I ′′−1(h)

192h
.

Moreover, differentiating (3.10) with respect to h and removing I ′′−1/3(h)

and I ′′′−1/3(h), we have

(3.11)

G1(h)

[
I ′′′0 (h)
I ′′′−1(h)

]
=

[
−86016h3 + 10 5
−110592h3 + 4 −12288h3 + 2

] [
I ′′0 (h)
I ′′−1(h)

]
,

where

G1(h) = 12h(1 + 4096h3).

It follows from the definition of ν(h) and (3.11) that

G1(h)ν ′ = −5ν2 + 8(9216h3 − 1)ν + (−110592h3 + 4),

which is the desired result. �

Recalling s = h3, ω(s) = ν(h), we easily get the following lemma.
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Lemma 3.4. For s ∈ (−1/4096, 0), ω(s) satisfies the following equa-
tions

ṡ = G∗(s) = 36s(1 + 4096s),

ω̇ = −5ω2 + 8(9216s− 1)ω + (4− 110592s).(3.12)

In what follows, we begin to prove theorems listed in section 2.

4. Proof of Theorem 2.6

Lemma 4.1. When h ∈ (−1/16, 0), we have P ′(h) > 0 and Q′(h) > 0.
Proof. By Definition 2.3, we have

P (h) =

∮
Γh
x−

4
3 ydx∮

Γh
x−

7
3 ydx

,

where

Γh : H(x, y) = x−
4
3 (

1

2
y2 − 1

12
x+

1

48
) = h, h ∈ (− 1

16
, 0).

Let

φ(x) =
1

2
x−

4
3 , Φ(x) = − 1

12
x−

1
3 +

1

48
x−

4
3 ,

f1(x) = x−
7
3 , f2(x) = x−

4
3 .

Define x̃ = x̃(x) as [15] such that Φ(x) = Φ(x̃) for 1/4 < x < 1 < x̃ <
+∞.

Noting

Φ′(x) =
1

36
x−

7
3 (x− 1),

we easily get

(4.1)
dx̃

dx
=

Φ′(x)

Φ′(x̃)
=
x−

7
3 (x− 1)

x̃−
7
3 (x̃− 1)

< 0

and

ζ(x) =
f2(x)

√
φ(x̃)Φ′(x̃)− f2(x̃)

√
φ(x)Φ′(x)

f1(x)
√
φ(x̃)Φ′(x̃)− f1(x̃)

√
φ(x)Φ′(x)

=
xx̃−

2
3 (x̃− 1)− x̃x−

2
3 (x− 1)

x̃−
2
3 (x̃− 1)− x−

2
3 (x− 1)

,
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where ζ(x) is such a criterion function that ζ ′(x) > 0(< 0) implies
P ′(h) < 0(> 0), see Theorem 2 of [15].

Let ψ(x) = x−2/3(x− 1), then

ζ(x) =
xψ(x̃)− x̃ψ(x)

ψ(x̃)− ψ(x)
,

and

(4.2) ζ ′(x) = ζx + ζx̃
dx̃

dx
,

where

ζx =
ψ(x̃)[(ψ(x̃)− ψ(x)) + ψ′(x)(x− x̃)]

(ψ(x̃)− ψ(x))2

=
ψ(x̃)(x̃− x)(ψ′(ξ)− ψ′(x))

(ψ′(x̃)− ψ(x))2 ,
1

4
< x < ξ < x̃,

similarly

ζx̃ =
ψ(x)(x̃− x)(ψ′(x̃)− ψ′(η))

(ψ′(x̃)− ψ(x))2 ,
1

4
< x < η < x̃.

Now we estimate the sign of the function ζ ′(x).

Recalling the fact that ψ′′(x) = −2/9x−8/3(x+ 5) < 0, ψ(x) < 0, and
ψ(x̃) > 0, we have

(4.3) ζx̃ > 0, ζx < 0.

(4.1), (4.2) and (4.3) yield

ζ ′(x) < 0,

which implies

P ′(h) > 0.

Similarly we can get Q′(h) > 0. �

By straightforward calculation, we easily obtain Lemma 4.2.

Lemma 4.2. When h→ −1/16, (P,Q)(h)→ (1, 1), R(h)→ 1.

Remark 4.3. (1) From Lemma 4.2, we may extend the domains
of the functions P (h), Q(h) and R(h) from h ∈ (−1/16, 0) to
h ∈ [−1/16, 0).
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(2) From Lemmas 4.1 and 4.2, we can rewrite the centroid curve∑
as follows ∑

= {(P,Q(P )) : P ≥ 1},

where Q(P ) = Q(h(P )), h = h(P ) is the inverse function of
P = P (h).

In order to get the global properties of the centroid curve, we first
study the convexities of Σ near the endpoints.

Lemma 4.4. Near the left endpoint (1, 1), Q(P ) is concave, which
means that d2Q/dP 2 < 0 for 0 ≤ h+ 1/16� 1.
Proof. From (3.1), we have

(4.4) G(h)J ′(h) = M2(h)J(h),

where

G(h) = 4h(1 + 4096h3),

and

M2(h) =


16384h3 − 10 0 7 −1280h2

−14 −8192h3 − 2 7 −1280h2

−24576h3 − 20 0 28672h3 + 14 −1280h2

224h 0 −112h 20480h3

 .
By the definitions of P (h), Q(h), R(h) and (4.4), we obtain

ḣ = G(h),

Ṗ = −14 + (−24576h3 + 8)P + 7Q− 1280h2R− 7PQ

+1280h2PR,

Q̇ = −20− 24576h3 + (24 + 12288h3)Q− 1280h2R− 7Q2

+1280h2QR,

Ṙ = 224h− 112hQ+ (4096h3 + 10)R− 7QR+ 1280h2R2.(4.5)

At the singularity (−1/16, 1, 1, 1), the linear matrix of system (4.5) is

−12


1 0 0 0
24 −1 0 0
12 0 −1 0
0 0 0 −1

 ,
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thus near the point (−1/16, 1, 1, 1), we suppose the functions P (h), Q(h)
and R(h) have the following asymptotic expansions

P = 1 + p1(h+
1

16
) +

p2

2!
(h+

1

16
)2 + · · · ,

Q = 1 + q1(h+
1

16
) +

q2

2!
(h+

1

16
)2 + · · · ,

R = 1 + r1(h+
1

16
) +

r2

2!
(h+

1

16
)2 + · · · .(4.6)

Substituting (4.6) into (4.5), we can get

p1 = 12, p2 =
980

3
,

q1 = 6, q2 =
58

3
,

r1 = 0, r2 =
80

9
.(4.7)

From (4.7), we get

d2Q

dP 2
|h=− 1

16
=
q2p1 − p2q1

p3
1

= −1 < 0,

which implies Q(P ) is concave near the left endpoint. This proves the
conclusion of Lemma 4.4. �

Before studying the concavity of the centroid curve near the right
endpoint, we prove the following lemma.

Lemma 4.5. Near h = 0 , I0(h), I1(h), I−1(h) and I−1/3(h) have the
following expansion

I0(h) =
7

10
λ1 + (

1

2
λ1k1 +

1

2
λ2k2 +

1

2
λ3)h− 40λ2h

2

−448

3
λ1h

3 + · · · ,

I1(h) = −7

5
λ1 + λ4h

− 1
2 − 16λ2h

2 − 256

3
λ1h

3 + · · · ,

I−1(h) = λ1 + (λ1k1 + λ2k2 + λ3)h+ 80λ2h
2 − 896

15
λ1h

3 + · · · ,

I− 1
3
(h) = λ2 +

56

5
λ1h+

640

3
λ2h

3 + · · · ,(4.8)

where λ1 6= 0, λ2 6= 0, λ4 6= 0.
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Proof. First extending the functions Ik(h)(k = 0, 1,−1,−1/3) to com-
plex plane, then using the theorem in [25,26], we compute their expan-
sions near h = 0.

Let X(h) = (I0(h), I1(h), I−1(h), I−1/3(h))T . By (3.1), we have

(4.9) X ′ =
B(h)

h
X,

where

B(h) =


−5+8192h3

2(1+4096h3)
0 7

4(1+4096h3)
− 320h2

1+4096h3

− 7
2(1+4096h3)

−1
2

7
4(1+4096h3)

− 320h2

1+4096h3

−5+6144h3

1+4096h3
0 7(1+2048h3)

1+4096h3
− 320h2

1+4096h3
56h

1+4096h3
0 − 28h

1+4096h3
5120h3

1+4096h3

 .
It is easy to know that for matrix

B(0) =


−5

2 0 7
4 0

−7
2 −1

2
7
4 0

−5 0 7
2 0

0 0 0 0

 ,
there exists

T =


7
10 0 1

2 0
−7

5 0 0 1
1 0 1 0
0 1 0 0

 ,
such that

T−1B(0)T = J = Λ∗ + Z,

where J is the Jordan matrix

J =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

2

 ,
and Λ∗ is the diagonal matrix Λ∗ = diag(0, 0, 1,−1/2), and Z is the
matrix Z = 0.

For any diagonal matrix Λ = diag(λ1, λ2, λ3, λ4), we define the con-
stant matrix

V = (vij) ∈ C4×4,
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where vij = 0, if λi−λj /∈ N(the set of natural numbers), i, j = 1, 2, 3, 4,
see [26]. Hence for the diagonal matrix Λ∗,

V ∗ =


0 0 0 0
0 0 0 0
ϑ31 ϑ32 0 0
0 0 0 0

 ,
where ϑ31, ϑ32 are constants.

Let

Φ(h) = Λ∗ + hΛ∗
V ∗h−Λ∗

=


0 0 0 0
0 0 0 0

ϑ31h ϑ32h 1 0
0 0 0 −1

2


and

Ψ(h) = T−1B(h)T = (1 +
+∞∑
k=1

(−4096h3)
k
)

·

Λ∗ +


7168h3 −800h2 0 0

56
5 h 5120h3 0 0

−21504
5 h3 480h2 4096h3 0

64512
5 h3 −1440h2 0 −2048h3


 .

Consider the matrix function

W (h) = (a(h), b(h), c(h), d(h))

such that W (0) = E(the unit matrix), where the vectors are given as

a(h) =

+∞∑
k=0

akh
k, b(h) =

+∞∑
k=0

bkh
k, c(h) =

+∞∑
k=0

ckh
k, d(h) =

+∞∑
k=0

dkh
k.

Using the theorem in [25,26], we have

h
d

dh
W (h) = Ψ(h)W (h)−W (h)Φ(h),

which is equivalent to

ha′(h) = Ψ(h)a(h)− ϑ31hc(h),

hb′(h) = Ψ(h)b(h)− ϑ32hc(h),

hc′(h) = Ψ(h)c(h)− c(h),

hd′(h) = Ψ(h)d(h) +
1

2
d(h).
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Substituting a(h), b(h), c(h) and d(h) into the above equalities and com-
paring the coefficients in terms of hk(k = 1, 2, 3) on both sides, we get

W1(h) =


0 0 0 0
56
5 0 0 0
k1 k2 0 0
0 0 0 0

 ,W2(h) =


0 −400 0 0
0 0 0 0
0 480 0 0
0 −576 0 0

 ,

W3(h) =


−1792

3 0 0 0
0 640

3 0 0
2688

5 0 0 0
−4608

5 0 0 0

 ,
where k1 and k2 are any constants. Moreover ϑ31 = 0, ϑ32 = 0, i.e.,
V ∗ = 0.

Hence we get

W (h) = E +W1h+W2h
2 +W3h

3 + · · · ,
thus the fundamental solution matrix of system (4.9) is

X̃(h) = TWhΛ∗
hZ+V ∗

= TWhΛ∗
=


x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

 ,
where

x11 =
7

10
+

1

2
k1h−

448

3
h3 +O(h

7
2 ), x12 =

1

2
k2h− 40h2 +O(h

7
2 ),

x13 =
1

2
h+O(h

7
2 ), x14 = O(h

7
2 ),

x21 = −7

5
− 256

3
h3 +O(h

7
2 ), x22 = −16h2 +O(h

7
2 ),

x23 = O(h
7
2 ), x24 = h−

1
2 +O(h

7
2 ),

x31 = 1 + k1h−
896

15
h3 +O(h

7
2 ), x32 = k2h+ 80h2 +O(h

7
2 ),

x33 = h+O(h
7
2 ), x34 = O(h

7
2 ),

x41 =
56

5
h+O(h

7
2 ), x42 = 1 +

640

3
h3 +O(h

7
2 ),

x43 = O(h
7
2 ), x44 = O(h

7
2 ).

This implies that I0(h), I1(h), I−1(h), I−1/3(h) have the expansions (4.8)
near h = 0.
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The fact that λ1 6= 0, λ2 6= 0 follows from Ik(0) 6= 0(k = 0, 1,−1,−1/3).
Moreover, we assert that λ4 6= 0. Otherwise, P (0) = −(7/5λ1)/(7/10λ1) =
−2. On the other hand, P (−1/16) = 1 and P ′(h) > 0, this is a contra-
diction. Hence λ4 6= 0. The lemma is proved. �

Lemma 4.6. Near the right endpoint, Q(P ) is concave, which means
that d2Q/dP 2 < 0 for 0 < −h� 1.
Proof. From Lemma 4.5, we know that when h→ 0−

I0(h)→ 7

10
λ1, I−1(h)→ λ1, I1(h)→∞.

Noting Lemmas 4.1 and 4.5, we have that when h→ 0−

P (h)→ +∞, P ′(h)→ +∞,

Q(h)→ 10

7
, Q′(h)→ 50(λ1k1 + λ2k2 + λ3)

49λ1
,

which implies dQ/dP → 0 as h→ 0−.
Recalling Q′(h)/P ′(h) > 0 for h ∈ (−1/16, 0), the centroid curve

∑
has an asymptotical line Q = 10/7 as h→ 0−, see Figure 2.

Therefore d2Q/dP 2 < 0 for 0 < −h � 1. This finishes the proof of
the lemma. �

P

Q

O

(1,1)

10/7

Figure 2. The behavoir of the centroid curve
∑

Proof of Theorem 2.6 Theorem 2.6 follows from Lemmas 4.1, 4.4
and 4.6.
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5. Proof of Theorem 2.7

It is easy to know that system (3.12) have four singularities: saddles
C(0, 2/5) and A(−1/4096,−31/5), an unstable node B(0,−2) and a
stable improper node D(−1/4096, 1).

Using (3.9) and (4.4), we get

ω(s) = ν(h) =
I ′′−1(h)

I ′′0 (h)
=

672hI0(h)− 336hI−1(h)− 10I− 1
3
(h)

5I− 1
3
(h)

=
672h− 336hQ− 10R

5R
.(5.1)

Lemma 4.2 implies that

P (− 1

16
) = Q(− 1

16
) = R(− 1

16
) = 1,

substituting the above equalities into (5.1), we have ω(−1/4096) =
−31/5.

On the other hand, Lemma 4.5 yields ω(0) = −2. Hence the graph of
ω(s) which we are interested in, denoted by Cω, is just the trajectory of
system (3.12) from node B to saddle A, see Figure 3.

CA

B

D

sO

C
-1/4096

Figure 3. The behavior of the auxiliary curve Cω

Proof of Theorem 2.7 Since the curve Cω is located on the stable
manifold at saddle A, ω(s) has the following asymptotic expansion at
s = −1/4096

(5.2) ω(s) = −31

5
+ ω1(s+

1

4096
) +

ω2

2!
(s+

1

4096
)2 + · · · .
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Substituting (5.2) into the following equation

ω̇ −G∗(s)
dω

ds
= 0.

Solving it, we get

ω1 =
39424

5
, ω2 =

2230452224

135
.

Hence the curve Cω is convex near the left endpoint (−1/4096,−31/5).
Moreover, Cω is globally convex for s ∈ (−1/4096, 0). Otherwise it
has at least an inflection point. Noting the convexity of Cω at the left
endpoint A, we easily find the straight line la,b : ω(s) = as + b which
has three intersection points with the curve Cω, denoted by M1 the
first intersection point from A to B, and intersects the straight line:
s = −1/4096 at A1(see Figure 4) below A. As a consequence of saddle
A, there must exist a tangent point M0 with system (3.12) locating
between A1 and M1. Hence on the line la,b, there are at least three
points M0,M2 and M3 having the same direction with system (3.12).

-1/4096

B

M3M2

M1M0A1

A

 s
O

la,b

Figure 4. The intersection points of the curve Cω with
the straight line la,b

On the other hand

(ω̇ − aṡ)|ω(s)=as+b

= (−73728a− 5a2)s2 + (−110592− 44a+ 73728b− 10ab)s

−5b2 − 8b+ 4.(5.3)
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Obviously (5.4) has at most two roots. This leads to a contradiction.
Therefore Theorem 2.7 is proved. �

From Theorem 2.7, we can easily get the following result.

Corollary 5.1. When s ∈ (−1/4096, 0), we have ω′(s) > 0.

6. Proof of Theorem 2.8

Lemma 6.1. For any constants α, β and γ, we have

(6.1) ϕ(h) := I(h) + 2hI ′(h) = mhI ′0(h) + khI ′−1(h) + nI ′− 1
3

(h),

where m = 3α+ 6β/7, k = 18γ/7, n = α/16− β/8 + 5γ/56.
Proof. Recall that

(6.2) I(h) = αI0(h) + βI1(h) + γI−1(h).

Noting Picard-Fuchs equations (3.1) and removing Ik(h)(k = 0, 1,−1)
from (6.2), we get

I(h) = (αh+
6

7
γh)I ′0(h)− 2βhI ′1(h) +

4

7
γhI ′−1(h)

+(
1

16
α− 1

8
β +

5

56
γ)I ′− 1

3

(h).(6.3)

On the other hand, differentiating (6.2) with respect to h, we have

(6.4) I ′(h) = αI ′0(h) + βI ′1(h) + γI ′−1(h).

Thus (6.1) follows from (6.3) and (6.4). �

Lemma 6.2. When h ∈ (−1/16, 0), the following equalities hold.
(1) If k = 0 in (6.1), then

ϕ̃(h) : = 192h3(
ϕ(h)

h
)′

= nI ′′−1(h) + [192(m+ 48n)h3 + 2n]I ′′0 (h).
(2) If k 6= 0, without loss of generality, suppose k = 1 in (6.1), then

ϕ̃(h) : = 192h3(
ϕ(h)

h
)′

= (b1h
3 + b2)I ′′−1(h) + (a1h

3 + a2)I ′′0 (h),(6.5)

where a1 = 192(m+ 48n), a2 = 2n, b1 = 192 and b2 = n.
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Proof. By using (6.1) and straightforward calculation, we have

(
ϕ(h)

h
)′ = mI ′′0 (h) + kI ′′−1(h) +

n

h2
(hI ′′− 1

3

(h)− I ′− 1
3

(h)).

After removing I ′′−1/3(h) and I ′−1/3(h) from the above equality, the results

are obtained. �

Proof of Theorem 2.8 Since I ′′0 (h) 6= 0, the zeros of the func-
tions ϕ̃(h) and ϕ̄(h) = ϕ̃(h)/I ′′0 (h) are the same.

If n = 0, then ϕ̄ (h) has at most one zero. Without loss of generality,
we suppose n 6= 0.

1. k = 0.
Let s = h3, ω(s) = ν(h) for s ∈ (−1/4096, 0), then

ϕ̄(h) = nν(h) + [192(m+ 48n)h3 + 2n]

= n(ω(s)− ϑ(s)),

where ϑ(s) = c1s + c2, c1 and c2 are constants depending on m and
n. Obviously the zero of ϕ̄(h) is the intersection point of Cω and Cϑ,
where Cϑ = {(s, ϑ(s)) : s ∈ [−1/4096, 0]}. Noting that Cω is globally
convex, while the curve Cϑ is a line segment, we conclude that they have
at most two intersection points. That is, ϕ̄(h) has at most two zeros for
h ∈ (−1/16, 0).

2. k = 1.
In this case, ϕ̄(h) can be expressed as follows

ϕ̄(h) = (a1h
3 + a2) + (b1h

3 + b2)ν(h)

= (a1s+ a2) + (b1s+ b2)ω(s).(6.6)

Suppose that a1b2 − a2b1 = 0. Then there exists some constant λ,
such that

ϕ̄(h) = (b1s+ b2)(ω(s) + λ).

Since ω(s) is increasing, ϕ̄(h) has at most two zeros.
If a1b2 − a2b1 6= 0, and there exists s1 such that b1s1 + b2 = 0, then

ϕ̄(h1) = a1s1 + a2 6= 0, where h1 = (s1)1/3. Without loss of generality,
suppose b1s+ b2 6= 0 for s ∈ [−1/4096, 0], then expression (6.6) becomes

ϕ̄(h) = (b1s+ b2)(ω(s)− χ(s)),

where

χ(s) = −a1s+ a2

b1s+ b2
,
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a1, a2, b1 and b2 are the same as that of (6.5). Hence the zero of ϕ̄(h)
is the intersection point of Cω and Cχ, where Cχ = {(s, χ(s)) : s ∈
[−1/4096, 0]}.

Since b1 = 192 6= 0, then Cχ is a hyperbola. If the hyperbola is
decreasing, shown as Figure 5(a), then it follows from ω′(s) > 0 that
Cω and Cχ has at most two intersection points. Suppose the hyperbola
is increasing, shown as Fig.5(b). In this case, Cω only intersect with
one branch of the hyperbola. If this happens for the right-lower branch,
then we get the same conclusion, because the right-lower one is concave
and Cω is globally convex.

Now we consider the case that Cω intersects with the left-upper branch
of the hyperbola, denoted by C1, see Figure 5(b).

(b)(a)

C1

Figure 5. The behavior of the curve Cχ

Since

(6.7) (ω̇ − χ′(s)ṡ)|ω=χ(s) =
−4608s

(192s+ n)2
(α1s

2 + β1s+ γ1),

where α1, β1 and γ1 are constants depending on m and n. Noting (6.7)
and ω(0) = χ(0) = −2, we get that for s ∈ [−1/4096, 0), Cω and C1

have at most three intersection points. Moreover, two is the maximal
number of the intersection points of Cω and C1 for s ∈ (−1/4096, 0).
Otherwise, Cω and C1 have exactly three intersection points. By using
the same arguments as proof of Theorem 2.7, we can find at least three
contact points with system (3.12) on C1 for s ∈ (−1/4096, 0), and it
contradicts (6.7). This finishes the proof in the second case.
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Therefore the function ϕ̄(h) has at most two zeros for h ∈ (−1/16, 0),
taking into account the multiplicities, this implies the result of Theorem
2.8.

7. Proof of Theorem 2.9

In what follows, we will prove that some assertions hold.
Assertion 1: For h ∈ (−1/16, 0), the number of zeros of I(h) is no

more than three.
Without loss of generality, suppose there are four zeros. Noting

I(−1/16) = 0, by mean value theorem, ((−h)1/2I(h))′ has at least four

zeros for h ∈ (−1/16, 0). Then ϕ(h) = −2(−h)1/2((−h)1/2I(h))′ also
has at least four zero for h ∈ (−1/16, 0). From Lemma 6.2, ϕ̃(h) has at
least three zeros. This contradicts Theorem 2.8.

Assertion 2: I(h) has at most two zeros for h ∈ (−1/16, 0).
Theorem 2.6 shows that the centroid curve Σ has the same concavity

near the two endpoints. This implies that its inflection points (if exists)
must appear in pairs. In the following, we will prove that the centroid
curve

∑
is globally concave without zero curvature.

First, the centroid curve
∑

is globally located in the right side of
the tangent line of

∑
at the left endpoint. Otherwise, we may find

a point near the left endpoint on the curve
∑

, at which the tangent
line of

∑
cuts two more points of

∑
. That is, there exist some α, β

and γ such that the associated Abelian integral I(h) has at least four
zeros for h ∈ (−1/16, 0), taking into account their multiplicities, which
contradicts assertion 1. Secondly,

∑
is monotonously increasing and

globally located below its asymptotical line Q = 10/7. If there exist two
inflection points, then we can find a straight line lα0,β0,γ0 such that it
has four intersection points with

∑
, which also implies I(h) = α0I0(h)+

β0I1(h) + γ0I−1(h) has four zeros for h ∈ (−1/16, 0) and leads to the
same contradiction. Hence we conclude that the centroid curve Σ is
globally concave. Moreover, it also has no zero-curvature point. This
is because the zero-curvature point here means that I(h) has one zero
point of multiplicity at least four.

Assertion 3: For some constants α, β and γ, I(h) has exactly two zeros
in h ∈ (−1/16, 0). The assertion follows from the fact that the centroid
curve

∑
is strictly concave.

Assertions 1-3 yield the result of Theorem 2.9.
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