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ON PRE-6-OPEN SETS AND TWO CLASSES OF
FUNCTIONS

M. CALDAS, S. JAFARI*, G. NAVALAGI AND T. NOIRI

ABSTRACT. In this paper we introduce the notions of pre-8-derived,
pre-6-border, pre-f-frontier and pre-6-exterior of a set and study
some of their basic properties. We also introduce two classes of
functions called #-preopen functions and #-preclosed functions. We
obtain their characterizations, their basic properties and their rela-
tionships with other types of functions between topological spaces.

1. Introduction and preliminaries

Mashhour et al. [14] defined a function f : (X,7) — (Y,0) from a
topological space (X, 7) into a topological space (Y, o) to be precontin-
uous if f~1(U) is preopen in X for every open set U in Y. Since then,
these functions have been extensively investigated. Precontinuity was
called near continuity by Ptak [21] and also called almost continuity by
Husain [11]. Recently Noiri ([17], [18]) introduced the notions of strongly
f-precontinuous and @-precontinuous functions which are stronger than
those of precontinuous and weakly precontinuous functions respectively.
In 2003, Cho [8] continued the work of Noiri and gave some other char-
acterizations of strongly 6-precontinuous functions including a charac-
terization using nets. Baker [5] also introduced a weak form of strong
O-precontinuity which he called weak 6-precontinuity. However, it is
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shown in Theorem 3.2 of [18] that weak #-precontinuity in the sense of
Baker is equivalent to @-precontinuity. In this paper, we introduce the
notions of pre-f-derived, pre-0-border, pre-f-frontier and pre-6-exterior
of a set and show that some of their properties are analogous to those
for open sets. Also, we give some additional properties of pre-6-closure
and pre-6-interior of a set due to ([17], [19]). Moreover, we define the
concepts of O-preopenness and f-preclosedness as a natural dual to the
f-precontinuity due to Noiri. We obtain several characterizations and
properties of these functions. Moreover, we also study these functions
comparing with other types of already known functions. It turns out
that strong #-preopenness implies -preopenness but not conversely. We
show that under a certain condition the converse is also true.

Throughout this paper, (X, 7) and (Y, o) (or simply, X and Y) denote
topological spaces on which no separation axioms are assumed unless ex-
plicitly stated. If S is any subset of a space X, then CI(S) and Int(S)
denote the closure and the interior of S, respectively. Recall that a set
S is called regular open (resp. regular closed ) if S = Int(Cl(S)) (resp.
S = Cl(Int(5))).

A subset S of X is called preopen [14] (resp. a-open [15] , S-open [1]
or semipreopen [2]) if S C Int(CI(S)) (resp. S C Int( Cl(Int(S))), S C
Cl(Int(C1(S)))). The complement of a preopen set is called preclosed.
The intersection of all preclosed sets containing S is called the preclosure
[10] of S and is denoted by pCl(S). The preinterior of S is defined by
the union of all preopen sets contained in S and is denoted by pInt(S).
The family of all preopen sets of X is denoted by PO(X).

A point z € X is called a #-cluster [26] (resp. pre-f-cluster [17]) point
of S if SN CI( U) # ( (resp. SN pCl(U) # () for each open (rep. pre-
open) set U containing z. The set of all §-cluster (resp. pre-6-cluster)
points of S is called the #-closure (resp. pre-6-closure) of S and is de-
noted by Cly(S) (resp. pCly(S)). A subset S is called #-closed (resp.
pre-O-closed) if Cly(S) = S (resp. pCly(S) = S). The complement of a
f-closed (resp. pre-f-closed) set is called 8-open (resp. pre-6-open). The
family of all pre-f-open (resp. pre-6-closed) sets of a space X is denoted
by POO(X,7)( resp. POC(X,1)).
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Definition 1.1. A function f: (X,7) — (Y, 0) is said to be

(i) weakly open ([23], [24]) if f(U) C Int(f(CI(U))) for each open
subset U of X,

(ii) weakly closed [24] if CI(f(Int(F'))) C f(F') for each closed subset
F of X,

(iii) strongly continuous ([13],[3]) if for every subset A of X, f(CI(A)) C
7(4),

(iv) almost open in the sense of Singal and Singal , written as a.o.S.,
[25] if the image of each regular open set U of X is an open set
of Y, equivalently if f(U) C Int(f(Int(CI(U)))) for each open
subset U of X,

(v) preopen [14](resp. preclosed [14]) if for each open set U (resp.
closed set F') of X, f(U) is pre-open (resp. f(F) is pre-closed)
set in Y,

(vi) contra f-preopen (resp. contra-closed [4]) if f(U) is pre-6-closed
(resp. open) in Y for each open (resp. closed) subset U of X,

2. Some properties of pre-f-open sets

The pre-6-interior and the #-interior of S, denoted by pInt,(S) and
Inty(S), are defined as follows:
plnty(S) = {z € X : for some preopen subset U of X,z € U C pCl(U) C
S} and

Intg(S) = {z € X : for some open subset U of X,z € U C Cl(U) C S}.

Recall that a space X is said to be pre-regular [19] if for each preclosed
set F' and each point z € X — F', there exist disjoint preopen sets U and
V such that z € U and F C V, equivalently if for each U € PO(X)
and each point x € U, there exists V € PO(X,z) such that z € V C
pCL(V) C U.

Theorem 2.1. Let A be a subset of a space X.

(i) A is a pre-0-open set if and only if A = plnty(A).
(ii) X —pInty(A) = pCly(X — A) and pInty(X — A) = X —pCly(A).
(iii) pCly(A) is pre-closed, but it is not in general pre-6-closed.

Proof. (iii) One can check that pCly(A) C pCl(pCly(A4)). On the
other hand, let z € pCl(pCly(A4)). Then for each U € PO(X,z), UN
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pCly(A) # 0. Therefore, there exists z € U N pCly(A). Hence z € U
and z € pCly(A). Then U € PO(X, 2) and AN pCl(U) # (. Therefore,
for each U € PO(X,z), AN pClU) # 0, ie, z € pCly(A). Thus
pCl(pCly(A)) C pCly(A). O

Example 2.2. Let X = {a,b,c} with 7 = {0, {a}, {c}, {a,c}, X}. Let
A = {a}. Then pCly(A) = {a,b} and pCly(pCly(A)) = X. Therefore
pCly(pCly(A)) # pCly(A). Hence pCly(A) is not pre-f-closed.

Theorem 2.3. ([17], [8]). For a subset A of a space X, the following
hold

(i) A C pCl(A) C pCly(A) and plnty(A) C pInt(A) C A,

(ii) If A is preopen (resp. preclosed), pCl(A) = pCly(A) (resp. plnty(A) =
pInt(A)).

Example 2.4. Let X = {a,b,c} with 7 = {0,{a},{a,b}, X}. Then
it can be easily verified that for A = {b}, we obtain pCly(4) = X,
pCl(A) = {b} . Therefore pCly(A) ¢ pCl(A), i.e., in general the converse
of Theorem 2.3 (i) may not be true.

Theorem 2.5. For an open (resp. closed) subset A of a space X,
Cl(A) = pCl(A) = pCly(A) = Cly(A) (resp. Intg(A) = plnty(A) =
plnt(A) = Int(A)).

Theorem 2.6. [5]. A space X is pre-regular if and only if pCl(A) =
pCly(A) for any subset A of X.

Theorem 2.7. Let A be a subset of a pre-reqular space X.

(i) Every pre-closed subset A of X is pre-0-closed.

(ii) pCly(A) (resp. pIntg(A)) is a pre-0-closed (resp. pre-8-open)
set.

Recall that a space X is said to be pre-Hausdorff [12], if for each pair
of distinct points z and y of X, there exists a pair of disjoint preopen
sets, one containing z and the other containing y.

Theorem 2.8. A space X is pre-Hausdor{f if and only if for each x € X,
the singleton {x} is pre-0-closed.
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Proof. Necessity. It is clear that {z} C pCly({z}). Let y ¢ {x}.
Then z # y. Since X is pre-Hausdorff, there exist U € PO(X,z) and
V € PO(X,y) such that U NV = (J; hence pCI(V) NU = (). Thus, we
have pCl(V) N {z} = 0. Then y ¢ pCly({z}). Hence pCly({z}) C {z}.
Therefore pCly({z}) = {z}, i.e., {z} is pre-O-closed.

Sufficiency. Let xz and y be two distinct points of X. Then y ¢ {z} =
pCly({z}) and there exists V € PO(X,y) such that pCI(V) N {z} = 0.
Put U = X\pCl(V). Then U € PO(X,z) and U NV = (). Therefore X
is pre-Hausdorff. O

Definition 2.9. Let A be a subset of a space X. A point z € X is
called a pre-6-limit point of A if for each pre-8-open set U containing
z, UN (A\{z}) # 0. The set of all pre-f-limit points of A is called the
pre-0-derived set of A and is denoted by pDy(A).

Theorem 2.10. For subsets A, B of a space X, the following statements
hold

(i) pD(A) C pDy(A), where pD(A) is the pre-derived set of A,
(ii) If A C B, then pDy(A) C pDy(B),

(iii) pDg(A) UpDe(B) = pDy(A U B) and pDy(AN B) C pDy(A) N
pDy(B),

(iv) pDo(pDg(A))\A C pDy(A),

(v) pDg(AUpDy(A)) C AUpDy(A) C pCly(A).

Proof. (i) It suffices to observe that every pre-f-open set is preopen.
(iii) pDy(A U B) = pDy(A) UpDy(B) is a modification of the standard
proof for D, where open sets are replaced by pre-8-open sets.

(iv) If x € pDy(pDy(A))\A and U is a pre-0-open set containing z, then
U0 (pDg(A)\{z}) # 0. Let y € U N (pDg(A)\{}). Since y € pDy(A)
andy € U, Un (A\{y}) # 0. Let 2 € UnN (A\{y}). Then z # z for
z€ Aand z ¢ A. Hence UN (A\{z}) # 0. Therefore 2 € pDy(A).

(v) Let © € pDy(A UpDy(A)). If z € A, the result is obvious. So
let z € pDy(A U pDy(A))\A. Then for pre-f-open set U containing z,
UN(AUpDy(A)\{z}) # 0. Thus UN(A\{z}) # 0 or UN(pDy(A)\{r}) #
0. Now it follows similarly from (4) that U N (A\{z}) # 0. Hence
z € pDy(A). Therefore, in any case pDg(A UpDy(A)) C AUpDy(A).
Since pDy(A) C pCly(A), AUpDy(A) C pCly(A). O
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Theorem 2.11. For subsets A, B of a space X, the following state-
ments are true

(i) pIntg(pInty(A)) C pInty(A),

(ii) A C B, then pInty(A) C pInty(B),
(iii) pIntg(A) Uplnty(B) C pInty(AU B),
(iv) pInty(AN B) C pInty(A) N pInty(B).

Definition 2.12. For a subset A of a space X, pby(A) = A\pInty(A)
is called the pre-6-border of A.

Theorem 2.13. For a subset A of a space X, the following statements
hold

i) pb(A) C pbg(A), where pb(A) denotes the pre-border of A,
(ii) A = pInts(A) Upby(A),

) pIntg(A) Npbe(A) =0,
(iv) A is a pre-0-open set if and only if pbg(A) =0,

)

)

)

v) pInte(pbe(A)) =0,
(vi) pby(pby(A)) = pby(A),
(vii) pbg(A) = ANpCly(X\A).

Proof. (v) If z € plnty(pbg(A)), then = € pby(A). On the other hand,
since pbg(A) C A, = € plnty(pbg(A)) C plnty(A). Hence z € plnty(A) N
pbg(A) which contradicts (iii). Thus plnty(pbg(A)) = 0.

(vii) phy(A) = A\plnty(A4) = A\(X\pCly(X\A4) = A pCly(X\4). O

Example 2.14. Let X = {a,b,c} with 7 = {0, {a}, {a,b}, X}. Let A =
{a,ch. Then pCly(X\A4) = pCly({b}) = X, pCI(X\A) = pCl({b}) =
{b}. Therefore we obtain pby(A) Z pb(A) , i.e., in general the converse
of Theorem 2.13(i) may not be true.

Definition 2.15. For a subset A of a space X, pFrg(A) = pCly(A)\pInty(A)
is called the pre-6-frontier of A.

Theorem 2.16. For a subset A of a space X, the following statements
hold

(i) pFr(A) C pFrg(A), where pFr(A) denotes the pre-frontier of A,
(ii) pCly(A) = pInty(A) UpFry(A),
(

(iii) pIntg(A) NpFre(A) =0,
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(iv) pba(A) C pFre(A),

v) pFrg(A) = pClg(A) NpCly(X\A),
(vi) pFre(A) = pFro(X\A),
(vii) pIntg(A) = A\pFry(A).

Pé?tzi) (ii) pIntg(A) UpFre(A) = pInty(A) U (pClo(A)\pInty(A)) =
pCly(A).

(ili) pIntg(A) NpFre(A) = pInte(A) N (pClg(A)\pInte(A)) = 0.

(iv) pFro(A) = pClg(A)\pInty(A) = pClg(A) N pCly(X\A).

(vii) A\pFryg(A) = A\(pCly(A)\pInte(A)) = pInty(A). O

The converses of (i) and (iv) of the Theorem 2.16 are not true in general,
as are shown by the following example.

Example 2.17. Consider the topological space (X, 7) given in Ex-
ample 2.8. If A = {a,c}, then pFry9(A) = X ¢ {b} = pFr(A) and also
pFro(A) = X ¢ {a,c} = pby(A).

Definition 2.18. For a subset A of a space X, pExtg(A) = pInty(X\A)
is called the pre-6-exterior of A.

Theorem 2.19. For a subset A of a space X, the following statements
hold

(i) pExtg(A) C pExt(A), where pExt(A) denotes the pre-exterior
of A,
(ii) pEto(A) = plnts(X\4) = X\pCly(A),
(iii) pExte(pEaty(A)) = pInte(pCly(A)),
(iv) If A C B, then pExtg(A) D pExty(B),
v) pEaty(X) =
(vi) pExty(0) =
(vii) pExty(X \pEfcta(A)) C pEzty(A),
(viii) pInty(A) C pExty(pExte(A)).

Proof. (iii) pExte(pExte(A)) = pExte(X\pCly(4)) = plnt, (X \ (X \pCly(A4)))

= plnty(pCly(A)).

(vii) pEurt (X\pEatg(A)) = pEats (X\pInte(X\4)) = plnt, (X\(X\plnts(X\4))
= plnt, (pInty (X\A4)) C pInty (X \A) = pExty(A).

(viii) pTnty(4) C.pTnty (pCly(4)) = plnty(X \plnty(Y\4))

= plnty (X \pExtg(A)) = pExty(pExtg(A)). O
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3. f-preopen functions

In [18], Noiri defined a function f : X — Y to be #-precontinuity if
for each z € X and each open set V of Y containing f(z), there exists
a preopen set U of X containing z such that f(pCIl(U)) C CI(V). He
also showed that a function f : X — Y is f-precontinuous if and only if
fH(V) C pIntg(f1(CI(V))) for every open set V of Y. We shall define
f-preopen functions as a natural by dual of -precontinuity.

Definition 3.1. A function f : (X,7) — (Y, 0) is said to be

(i) B-preopen if f(U) C pInte(f(CI(U))) for each open set U of X,
(ii) weakly preopen [6] if f(U) C pInt(f(CIl(U))) for each open set
U of X,
(iii) strongly @-preopen if f(U) is pre-f-open in Y for each open set
U of X.
Now we have the following diagram in which none of the implications
reverses as shown the following examples.

strongly 0-preopen = preopen
\ \
0-preopen = weakly preopen

Example 3.2. (i) A 6-preopen function need not be strongly 6-preopen.
Let X =Y = {a,b,c}, 7 = {X,0,{a},{a,b},{a,c}} and o = {Y, 0, {a},
{a,b}}. Let f: (X,7) — (Y,0) be the identity function. Then f is 6-
preopen and preopen since pInty(f(Cl({a}))) = pInty(f(Cl({a,b}))) =
pInty(f(Cl({a,c}))) =Y but f is not strongly 6-preopen since f({a}) #
pInt(f({a})

(ii) A weakly open function need not be -preopen.
Let X = {a,b,c}, 7 = {X,0,{a},{c},{a,c}} and o = {X,0,{b}, {a,b},
{b,c}}. Let f : (X,7) — (X,0) be the identity function. Then f is
weakly open and hence weakly preopen since Int(f(Cl({a}))) = {a, b},
Int(f(Cl({c}))) = {b,c}, Int(f(Ci({a,c}))) = X but f is neither 6-
preopen nor preopen since f({a}) & pInty(f(Cl({a}))).

(iii) A @-preopen function need not be weakly open.

Let X = {a,b,c}, 7 = {X,0, {c}, {a,b}} and o = {X, 0, {a}, {b,c}}. The
identity function f : (X,7) — (X,0) is #-preopen and preopen but not
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weakly open.

Since a topological space Y is submaximal if and only if PO(Y,0) = o
[22], then f : (X,7) — (Y, 0) is open whenever f is preopen and (Y, 0)
a submaximal space. A function f: (X,7) — (Y,0) is f-preopen if f is
weakly preopen and Y is pre-regular.

Example 3.2 shows that (1) #-preopenness and weakly openness are
independent notions and (2) preopenness and weak openness are inde-
pendent of each other.

Theorem 3.3. Let X be a regular space. A function f : (X,7) — (Y, 0)
is @-preopen if and only if f is strongly 0-preopen.

Proof. The sufficiency is clear.

For the necessity, Let W be a nonempty open subset of X. For each
z in W, let U, be an open set such that x € U, C CI(U,) C W.
Hence we obtain that W = U{U, : z € W} = U{CI(U,) : z € W}
and, f(W) = U{f(Uy) : © € W} C U{pInty(f(ClL(U;))) : x € W} C
pInty(f(U{CL(U;) : = € W}) = pInte(f(W)). Thus f is strongly 6-
preopen. O

The following result gives several characterizations of §-preopen func-
tions.

Theorem 3.4. For a function f: (X,7) — (Y,0), the following condi-
tions are equivalent.

(i) f is O-preopen,

f(Intg(A)) C pInty(f(A)) for every subset A of X,

ntg( YB)) c f~YpInty(B)) for every subset B of Y,
Y pCly(B)) C Cly(f Y(B)) for every subset B of Y,
nt(F)) C pIntg(f(F)) for each closed subset F of X,

(i
iii) I

/-

e

:;Elnt(Cl( ))) C pInte(f(CIL(U))) for each open subset U of X,
f(u

(iii
(iv

i)
i)
)
v)
)
i)
)

~—

(V1

(vii

(viii

U) C pInty(f(CLU))) for every reqular open subset U of X,
) C pInty(f(CLU))) for every a-open subset U of X.

— =

Proof. The proofs of (v) — (vi) — (vii) — (viii) — (i) are straightfor-
ward and are omitted.

(i) — (ii). Let A be any subset of X and z € Intg(A). Then , there exists
an open set U such that z € U C Cl(U) C A. Hence f(z) € f(U) C
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f(CYU)) C f(A). Since f is O-preopen, f(U) C plnty(f(CHU))) C

pIntg( (A)). It implies that f(z) € plnty(f(A)). Therefore z €
YpInty(f(A))). Thus Intg(A) < f '(pInty(f(A))), and so
(Inte( ) C pInt,(f(A)).

(ii) — (iii). Let B be any subset of Y. Then by (11)
f(Intyg(f~1(B))) C pInty(B). Therefore Inty(f 1(B)) C f (pInty(B)).
(ili) — (iv). Let B be any subset of Y. Using (iii), we have X —
Cly(f~1(B)) = Int(X — f~ ( ) = Inte(ffl(Y—B)) C f(pInty(Y —
B)) = f~ 1YY — pCly(B )) — (fY(pCly(B)). Therefore, we obtain
f~H(pCly(B)) € Clg(f~ (B))
(iv) = (v). Let F be any closed set of X. Then by (iv) f~!(pCly(Y —
f(F))) C Cly(f~1(Y = f(F))). We have f- HpCly(Y—f(F)) = f~H (Y -
plnty(f(F))) = X — f~!(pInty(f(F))). On the other hand Cly(f~'(Y —
f(F) = Cly(X—f~'(f(F))) C Clg(X—F) = X—Inty(F) = X —Int(F),
since F is closed. Therefore, Int(F) C f~!(pInty(f(F))) and hence
f(Int(F)) C pInty(f (F)). O

Theorem 3.5. Let f : (X, 7) — (Y,0) be a bijective function. Then the
following statements are equivalent.

(i) f is is O-preopen.
(ii) pClo(f(U)) C f(CUU)) for each open set U in X.
(iii) pClo(f(Int(F))) C f(F) for each closed set F in X.

Proof. (i) — (iii). Let F be a closed set in X. Then we have f(X—F) =
Y—f(F) C plnty(f(CL(X—F))) andso Y —f(F) C Y —pCly(f(Int(F))).
Hence pCly(f(Int(F))) C f(F).

(iii) — (ii). Let U be an open set in X. Since Cl(U) is a closed set and
U C Int(CIU)), by (iii) we have pCly(f(U)) C pCly(f(Int(Cl(U))) C
F(CUD)).

(ii) — (i). Let U be any open set of X. By (ii), we have pCly(f(X
Cl(U))) C f(CI(X —CL{U))). Since f is bijective, pCly(f (X —Cl(U)))
Y — pluty(F(CL(U))) and f(CL(X = CUU)) = F(X - Int(CL(T)))
f(X =U) =Y — f(U). Therefore, we obtain f(U) C pluty(f(CLU))
and hence f is 6-preopen.

O=nNn I |

Theorem 3.6. Let X be a regular space. Then for a function f :
(X,7) = (Y,0), the following conditions are equivalent.

(i) f is O-preopen.
(ii) For each 0-open set A in X, f(A) is pre-0-open in Y.
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(iii) For any set B of Y and any 0-closed set A in X containing
fY(B). there exists a pre-0-closed set F in'Y containing B such
that f~1(F) C A.

Proof. (i) — (ii) : Let A be a f-open set in X. Since X is regular, by
Theorem 3.3 f is strongly #-preopen and A is open. Therefore f(A) is
pre- f-open in Y.

(ii) — (iii) : Let B be any set in Y and A be a 6-closed set in X such
that f1(B) C A. Since X — A is f-open in X, by (ii), f(X — A) is
pre-f-open in Y. Let F =Y — f(X — A). Then F is pre-6-closed and
BCF.Now, f Y (F)=f Y (Y-f(X-A)=X—-f1f(X-4)) C A
(iii) — (i) : Let B be any set in Y. Let A = Clp(f (B)). Since X is
regular, A is a f-closed set in X and f !(B) C A. Then there exists
a pre-f-closed set F in Y containing B such that f !(F) C A. Since
F is pre-O-closed f1(pCly(B)) C f~Y(F) C Cly(f(B)). Therefore by
Theorem 3.4, f is a #-preopen function. O

Theorem 3.7. If f : (X,7) = (Y,0) is O-preopen and strongly contin-
uous, then f is strongly 0-preopen.

Proof. Let U be an open subset of X. Since f is #-preopen, f(U) C
plnty(f(Cl(U))). However, because f is strongly continuous, f(U) C
plnty(f(U)) and therefore f(U) is pre-f-open. Hence, f is strongly 6-
preopen. [l

Example 3.8. A strongly 6-preopen function need not be strongly
continuous.

Let X = {a,b,c}, and let 7 be the indiscrete topology for X. Then the
identity function f : (X,7) — (X, 7) is a strongly 6-preopen function
which is not strongly continuous.

Theorem 3.9. If f: (X,7) = (Y,0) is closed and a.0.S., then f is a
0-preopen function.

Proof. Let U be an open set in X. Since f is a.0.S. and Int(Cl(U)) is reg-
ular open, f(Int(Cl(U))) is open in Y and hence f(U) C
f(Int(CYU))) < Int(f(CHD))). Since f is closed, f(U) C
plnty(f(C1(U))) by Theorem 2.5. This shows that f is #-preopen. O

The converse of Theorem 3.9 is not true in general.
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Example 3.10. Let X = {a,b,c¢} , 7 = {0, X,{a},{c},{a,c}} and
o={0,X,{a},{b,c}}. Let f: (X,7) = (X,0) be the identity function.
Then f is f-preopen but it is not a.0.S., since {c} is a regular open set in
(X,7) and f({c}) = {c} is not open in (X, o). It is easy to verify that
f is not a closed function.

Lemma 3.11. [14] If f : (X,7) — (Y,0) is a precontinuous function,
then for any open set U of X , f(CL(U)) C CI(f(U)).

Theorem 3.12. If f : (X,7) — (Y,0) is a weakly preopen and precon-
tinuous function, then f is preopen.

Proof. Let U be an open set in X. Then by weak preopenness of f,
f(U) C pInt(f(CI(U))). Since f is precontinuous, f(CI(U)) C CI(f(U)).
Hence we obtain that f(U) C pInt(f(CIl(U))) C pInt(CIl(f(U))) C
Int(CIl(f(U))). Therefore, f(U) C Int(CI(f(U))) which shows that
f(U) is a preopen set in Y. Thus, f is a preopen function. O

Definition 3.13. A space X is said to be hyperconnected [16] if every
nonempty open subset of X is dense in X.

Theorem 3.14. Let X be a hyperconnected space, then f : (X,7) —
(Y,0) is 0-preopen if and only if f(X) is pre-6-open in Y.

Proof. The sufficiency is clear. For the necessity observe that for any
open subset U of X, f(U) C f(X) = pInty(f(X)) = pInty(f(CLU))).
O

4. f-preclosed functions

Definition 4.1. A function f : (X,7) — (Y, 0) is said to be

(i) @-preclosed if pCly(f(Int(F'))) C f(F) for each closed set F' in
X,

(ii) strongly #-preclosed if every closed set F of X, f(X) is pre-6-
closed in Y.

Clearly, every strongly 6-preclosed function is 6-preclosed, since
pCly(f(Int(A))) C pCly(f(A)) = f(A) for every closed subset A of X.
But this is not true conversely.
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Example 4.2. Let f : (X,7) — (Y,0) be the function defined in
Example 3.2(i) (resp.Example 3.2(ii)). Then it is shown that f is a 6-
preclosed function which is not strongly 6-preclosed (resp. weakly closed
function need not be 6-preclosed).

Theorem 4.3. For a function f: (X,7) — (Y,0), the following condi-
tions are equivalent

(i) f is O-preclosed.

(ii) pCly(f(U)) C f(CUU)) for every open subset U of X.

(iii) pCly(f(U)) C f(CUU)) for each preopen subset U of X.

(iv) pCly(f(Int(F))) C f(F') for each preclosed subset F' of X.
v) pCly(f(Int(F))) C f(F) for every a-closed subset F' of X.

(vi) pCly(f(Int(CL(U)))) C f(CIUU)) for each subset U of X.

(vii) pCly(f(U)) C f(CI(U)) for each preopen subset U of X.
Proof. (i) — (ii). Let U be any open subset of X. Then pCly(f(U)) =
pCly(f (Int(U))) € pCly(f (Int(CLV)))) C f(CUV)).

(i) — (iii). Let U be any preopen set of X. Then pCly(f(U)) C

pCly(f(Int(C1(V)))) € f(Cl(Int(CL(V)))) < f(CUV)).

(ili) — (iv). Let F be any preclosed set of X. Then, we have
pCly(f(Int(£))) C f(Cl(Int(F))) C f(F).

It is clear that (iv) — (v) — (vi) — (vii) — (i). O

Theorem 4.4. Let Y be a pre-reqular space. Then for a function f :
(X,7) = (Y,0), the following conditions are equivalent.

(i) f is O-preclosed.

(ii) pClo(f(U)) C f(CUU)) for each regular open subset U of X.

(iii) For each subset F in'Y and each open set U in X with f~'(F) C
U, there exists a pre-9-open set A inY with F C A and f~1(A) C
clu).

(iv) For each point y in'Y and each open set U in X with f~'(y) C U,
there exists a pre-0-open set A in'Y containing y and f~'(A) C
clu).

Proof. It is clear that (i) — (ii) and (iii) — (iv).

(ii) — (iii). Let F' be a subset of ¥ and U an open set in X with
f~YF) c U. Then f~Y(F)N CI(X — CI(U)) = ¢ and consequently,
Fn f(C(X — CU))) = ¢. Since X — Cl(U) is regular open, F' N
pCly(f(X —Cl(U))) = ¢ by (ii). Let A =Y —pCly(f(X —CLU))). Then
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A is a pre-f-open set with F C A and f 1(A) C X — f Y(pCly(f(X —
CI(U)))) c X — f (X —CI(U)) c CI(U).

(iv) — (i). Let F be closed in X and let y € Y — f(F). Since f '(y) C
X — F, there exists a pre-f-open set A in Y with y € A and f~1(A4) C
Cl(X — F) = X —Int(F) by (iv). Therefore AN f(Int(F)) = ¢, so that
y € Y — pCly(f(Int(F))). Thus pCly(f (Wt(F)) < £(F).

Theorem 4.5. A bijection [ : (X,7) — (Y, 0) is 6-preopen if and only
if f is @-preclosed.

Proof. This is an immediate consequence of Theorem 3.5.

Next we investigate conditions under which 6-preclosed functions are
strongly @-preclosed.

Theorem 4.6. (i) If f: (X,7) — (Y, 0) is preclosed and contra-closed,
then f is strongly 0-preclosed and closed.
(ii) If f: (X, 1) = (Y, 0) is contra O-preopen, then f is O-preclosed.

Proof. (i) Let F be a closed subset of X. Since f is preclosed,
pClo(Int(f(F))) = Cl(Int(f(F'))) C f(F) and since f is contra-closed,
f(F) is open. Therefore by Theorem 2.5 CI(f(F)) = pCly(f(F)) =
pCly(Int(f(F))) C f(F) and hence f(F') is pre-6-closed and closed in
Y. Therefore, f is strongly 6-preclosed and closed.

(ii) Let F' be a closed subset of X. Then, pCly(f(Int(F'))) = f(Int(F'))

f(F).

Example 4.7. Example 3.2(i) shows that 6-preclosedness does not
imply contra 6-preopenness.

Example 4.8. Contra-closedness and 6-preclosedness are independent
notions. Example 3.2(i) shows that 6-preclosedness does not imply
contra-closedness while the reverse is shown in the Example 3.2(ii).

Theorem 4.9. IfY is a pre-reqular space and if f : (X,7) = (Y,0)
is one-to-one and O-preclosed, then for every subset F of Y and every
open set U in X with f~1(F) C U, there exists a pre-O-closed set B in
Y such that F C B and f~%(B) C CI(U).
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Proof. Let F be a subset of Y and U an open subset of X with
f~Y(F) c U. Put B = pCly(f(Int(CI(U)))), then by Theorem 2.7
B is a pre-f-closed subset of Y such that F C B, since F C f(U) C
f(Int(ClL(U))) C pCly(f(Int(CL(U)))) = B. Now since f is f-preclosed,
FUB) C Cl(U).

Taking the set F' in Theorem 4.9 to be {y} for y € Y we obtain the
following result.

Corollary 4.10. IfY is a pre-regular space and if f : (X,7) — (Y, 0)
is one-to-one and O-preclosed, then for every point y in Y and every
open set U in X with f~'(y) C U, there exists a pre-0-closed set B in
Y containing y such that f~*(B) C CI(U).

Recall that a set F' in X is f-compact [24] if for each cover Q of
F by open U in X, there is a finite family Uy,...,U, in € such that
F C Int(U{CI(U;) : i =1,2,...,n}).

Theorem 4.11. Let (Y,0) be a pre-reqular space. If f : (X, 7) — (Y, 0)
is a O-preclosed function with 0-closed fibers, then f(F) is pre-0-closed
for each 0-compact F in X.

Proof. Let F be §-compact and y € Y — f(F). Then f '(y) N F = ¢
and for each z € F there is an open U, C X with z € U, such that
Cl(Uy) N fYy) = ¢. Clearly, Q = {U, : z € F} is an open cover of
F' and since F is 6-compact, there is a finite family {U,,, ..., Uy, } C Q
such that F C Int(A), where A = J{CIl(Uy,) : i = 1,...,n}. Since f
is @-preclosed, by Theorem 4.4 there exists a pre-f-open B C Y with
f~Yy) c f7Y(B) c Cl(X — A) = X — Int(A) C X — F. Therefore
y € Band BN f(F) = ¢. By Theorem 2.1 (i), there exists a preopen set
W with y € W such that pCl(W) C B. Therefore pCI(W) N f(F) = ¢.
Thus y € Y — pCly(f(F)). This shows that f(F') is pre-6-closed.

Two nonempty subsets A and B in X are said to be strongly sepa-
rated [24] if there exist open sets U and V in X with AC U and BCV
and CI(U)NCI(V) = ¢. If A and B are singletons we may speak of
points being strongly separated. We will use the fact that in a normal
space, disjoint closed sets are strongly separated.
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A topological space (X, 7) is said to be 6-pre-T if for z,y € X with
x # y there exist disjoint pre-0-open sets U and V such that x € U and
yevV.

Theorem 4.12. Let (Y,0) be a pre-regular space. If f : (X,7) — (Y, 0)
is a O-preclosed surjection and all pairs of disjoint fibers are strongly
separated, then'Y is 0-pre-Ty (hence pre-Ts).

Proof. Let y and z be two points in Y. Let U and V be open sets in
X such that f~'(y) € U and f~!(2) € V with CI(U) N Cl(V) = ¢. By
O-preclosedness (Theorem 4.4) there are pre-f-open sets F' and B in Y
such that y € F and z € B, f~(F) c CI(U) and f }(B) C CI(V).
Therefore F N B = ¢, because CI(U) N CI(V) = ¢ and f is surjective.
Then Y is 8-pre-Ts.

Corollary 4.13. IfY is a pre-regular space and if f : (X,7) — (Y, 0)
15 a B-preclosed surjection with closed fibers and X is normal, then'Y is
0-pre-Ty (hence pre-Ty).

Definition 4.14. A subset S of a topological space (X, 7) is said to be
quasi H-closed relative to (X, 7) [20] (resp. p-closed relative to (X, 1)
[9]) if for every cover {U, | & € A} of S by open (resp. preopen) sets of
X, there exists a finite subset Ay of A such that S C U{CI(U,) | @ € Ap}
(resp. S C U{pCIl(Uy,) | @ € Ag}). A topological space (X, 7) is said to
be quasi H-closed [7] (resp. p-closed) if the subset X is quasi H-closed
relative to (X, 7) (resp. p-closed relative to (X, 7)).

Every p-closed space is quasi H-closed since pCl(U) = CIl(U) for every
open set U. It is shown in Theorem 2.5 of [9] that a T space X is p-
closed if and only if it is quasi H-closed and strongly irresolvable. It is
also shown in Theorem 5.3 of [18] that if f : X — Y is a §-precontinuous
function and K is p-closed relative to X then f(K) is quasi H-closed
relative to Y.

Theorem 4.15. Let Y be a pre-regular space. If f : X — Y is a
0-preclosed surjection with compact point inverses and K is p-closed rel-
ative to Y, then f~Y(K) is quasi H-closed relative to X .

Proof. Let {U, | @ € A} be any cover of f~'(K) by open sets of
X. For each y € K, f~'(y) is compact and f~'(y) C Upeca Ua- There
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exists a finite subset A(y) of A such that f~!(y) C Uaca(y) Ua- Put
U(y) = Uaca(y) Ua- Since f is O-preclosed, by Theorem 4.4 there exists

a pre-f-open set V(y) containing y such that f~'(V(y)) C Cl(U(y)).
Since V (y) is pre-0-open, there exists a preopen set V;(y) such that y €
Vo(y) € pClL(Vo(y)) € V(y). Since the family {Vo(y) | y € K} is a cover
of K by preopen sets of Y, there exist a finite number of points, say, y1,
Y2, . . . yn of K such that K C Ui, pCl(Vo(y;)); hence K C Uj—; V(vi).
Therefore, we obtain f~1(K) C U™, f~*(V(y)) C U, CL(U(yi)) =

i=1 Uaca(y;) Cl(Ua). This shows that f~YK) is quasi H-closed relative
to X.

Corollary 4.16. Let Y be a pre-reqular space and f : X — Y a 6-
preclosed surjection with compact point inverses. If Y is a p-closed space,
then X is quasi H-closed.
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