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ABSTRACT. In this paper, we establish some relations between
the sectional curvature and the shape operator and also be-
tween the k-Ricci curvature and the shape operator for slant
submanifolds in Kenmotsu space forms.

1. Introduction

According to B.Y. Chen, one of the basic problems in submani-
fold theory is to find simple relationships between the main extrin-
sic invariants and the main intrinsic invariants of a submanifold.
Scalar curvature and Ricci curvature are among the main intrinsic
invariants, while the squared mean curvature is the main extrin-
sic invariant. In [4], B.Y. Chen establishes a relationship between
sectional curvature function K and the shape operator for submani-
folds in real space forms. In [5], he also gives a relationship between
Ricci curvature and squared mean curvature.
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A contact version of B.Y. Chen’s inequality and its applications
to slant immersions in a Sasakian space form M (c) are given in
[3]. But there is another interesting class of almost contact metric
manifolds, namely Kenmotsu manifolds [7]. In the present paper,
we study slant submanifolds of Kenmotsu space forms and establish
relations between the sectional curvature and the shape operator
and also between the k-Ricci curvature and the shape operator for
slant submanifolds in Kenmotsu space forms.

2. Preliminaries

Let M be an almost contact metric manifold [1] with an almost
contact metric structure (¢, &, 7, g), that is, ¢ is a (1, 1) tensor field,
§ is a vector field, 7 is a 1-form and g is a Riemannian metric on
M such that

PP =—I+n®¢ nE)=1, ¢E) =0, nogp=0,

(2.1)
g(¢X, ¢Y) = 9<X7 Y) - n(X>77(Y)7 (2'2>
9(X,0Y) = —g(¢X,Y), g(X,&) =n(X) (2.3)

for all X,Y € TM.
An almost contact metric manifold is known to be a Kenmotsu
manifold [7] if

(Vx9)Y = g(¢X,Y)E —n(Y)oX, (2.4)
Vxé=—¢*X =X —n(X)§, X eTM, (2.5)

for any vector fields X,Y on M , where V denotes the Riemannian
connection with respect to g.

We denote by ® the fundamental 2-form of M, that is, ® (X,)Y) =
g (pX,Y), for any vector fields X,Y on M. Tt was proved that the
pairing (®,n) defines a locally conformal cosymplectic structure,
that is

dd =20 An, dn=0. (2.6)
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A plane section ¢ in T, p]\7[ of an almost contact metric manifold
M is called a @-section if ¢ L & and ¢ (0)=o0. M is of constant ¢-
sectional curvature if at each point p € M the sectional curvature
K (o) does not depend on the choice of the ¢-section o of T}, M, and
in this case for p € M and for any p-section o of T, M, the function
¢ defined by ¢(p) = K(o ') is called the p-sectional curvature of M.
A Kenmotsu manifold M with constant g-sectional curvature c is
said to be a Kenmotsu space form and is denoted by M (c).

The curvature tensor R of a Kenmotsu space form M (c) is given

by [7]
AR (X,Y, Z,W) = (c=3)[g (X, W)g (Y, Z) —g(X,2Z) g (Y,W)]
+(e+ D]g (X, W) g (Y, 2) — g (X, 2) g (Y, W) —
29 (pX,Y) g (0Z, W)+ g (X, Z)n(Y)n (W) -
g (Y, Z)n(X)n (W) +g (Y, W)n(X)n(Z) -
g (X, W)n(Y)n(Z)] (2.7)

for all X,Y,Z, W e TM.

Let M be an n-dimensional Riemannian manifold. The scalar
curvature 7 at p is given by 7 = 3, _; K;;, where Kj; is the sectional
curvature of M associated with a plane section spanned by e; and
e; at p € M for any orthonormal basis {es,...,e,} for T,M. Now
let M be a submanifold of an m-dimensional manifold M equipped
with a Riemannian metric g. The Gauss and Weingarten formulae
are given respectively by VxY = VxY + o (X,Y) and VXN =
—AnX + V%N for all X,Y € TM and N € T+ M, where Vv,V
and V+* are respectively the Riemannian, induced Riemannian and
induced normal connections in M, M and the normal bundle T+M
of M respectively, and o is the second fundamental form related to
the shape operator A by g (h(X,Y),N) =g (AxX,Y). Then the
equation of Gauss is given by

R(X,Y,Z,W)=R(X,Y,Z,W) + g(h(X,W),h(Y,Z))
- g<h<X7Z)’h(KW)) (28)

for any vectors XY, Z, W tangent to M, where R and R are the
curvature tensors of M and M respectively.
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The relative null space of M at a point p € M is defined by
N, ={X eT,M|o(X,Y)=0, foral Y € T,M}.

Let {ey, ..., e, } be an orthonormal basis of the tangent space T, M.
The mean curvature vector H at p € M is

n

1
H= —trace Z (e:,€;) . (2.9)
’L:1
The submanifold M is totally geodesic in M if ¢ = 0, and minimal
it H=0. If o(X,Y) = g(X,Y)H for all XY € TM, then M is
totally umbilical. We put

7 =glolenes) e, ol = 3 gloles ei)olen e;)),
i,7=1
where e, belongs to an orthonormal basis {e, 1, ..., e, } of the nor-
mal space Tle .
Suppose L is a k-plane section of 7, M and X a unit vector in L.
We choose an orthonormal basis {ey, ..., ex} of L such that e; = X.
Define the Ricci curvature Ricy, of L at X by

RICL(X) :K12+K13—|——|—K1k, (210)

where Kj;; denotes the sectional curvature of the 2-plane section
spanned by e;,e;. We simply called such a curvature a k-Ricci
curvature.
The scalar curvature 7 of the k-plane section L is given by
1<i<j<k
For each integer k, 2 < k < n, the Riemannian invariant ©; on an
n-dimensional Riemannian manifold M is defined by

Or(p) = L —

where L runs over all k—plane sections in 7, M and X runs over all
unit vectors in L.

From now on, we assume that the dimension of M is n + 1 and
that of the ambient manifold M is 2m + 1. We also assume that
the structure vector field ¢ is tangent to M.

mf Ric,(X), pe M, (2.12)
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For a vector field X in M, we put
0X = PX + FX, PX e TM, FX € T+ M.

(2.13)
For any local orthonormal basis {ej, es, ... ,e,41} for T,M, we can
define the squared norm of P and F' by
n+1 n+1
1PI* = 3" glew Pey)*, (IFIP = 37 (e Fey)”,
irj=1 ij=1 (2.14)

respectively. It is easy to show that both || P||* and || F||* are inde-
pendent of the choice of the orthonormal basis.

A submanifold M of an almost contact metric manifold with
¢ € TM is called a semi-invariant submanifold or a contact CR
submanifold [8] if there exists two differentiable distributions D
and D+ on M such that (i) TM = DOD+ @&, (ii) the distribution
D is invariant by ¢, i.e., (D) = D, and (iii) the distribution D is
anti-invariant by ¢, i.e., (D) C T+ M.

The submanifold M tangent to & is said to be invariant or anti-
invariant [8] according to F' = 0 or P = 0. Thus, a contact CR-~
submanifold is invariant or anti-invariant according to D+ = {0}
or D = {0}. A proper contact CR-submanifold is neither invariant
nor anti-invariant.

For each non zero vector X € T,M, such that X is not propor-
tional to &,, we denote the angle between X and T,M by 6 (X).
Then M is said to be slant [2] and [6] if the angle 6 (X) is constant,
that is, it is independent of the choice of p € M and X € T,M —{¢}.
The angle 6 of a slant immersion is called the slant angle of the
immersion. Invariant and anti-invariant immersions are slant im-
mersions with slant angle # = 0 and § = 7/2 respectively. A proper
slant immersion is neither invariant nor anti-invariant.

3. Sectional curvature and shape operator

B.Y. Chen establishes a sharp relationship between the shape
operator and the sectional curvature for submanifolds in real space
forms [5]. In this section, we establish a similar inequality between
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the shape operator and the sectional curvature for slant submani-
folds in a Kenmotsu space form.

Let M be an (n+ 1)-dimensional #-slant submanifold in a (2m +
1)-dimensional Kenmotsu space form M (c) such that £ € TM. Let
p € M and a number
c—3 N (3ncos?0 — 2n)(c + 1)

4 dn(n+1)
such that the sectional curvature K > b at p.

Now we choose an orthonormal basis

b>

{61, .. ,€n+1 = f, €n+2, Ce ,€2m+1}
at p such that e, is parallel to the mean curvature vector H, and
€1,...,ensr1 diagonalize the shape operator A, 5. Then we have
ag 0 -+ 0
0 ay --- 0
An+2 = . . .. . ) (31)
0 0 - apn
n+1
A, = (a%) , trace A, = Z o, =0,
i=1
i,j=1,.,n+1Lr=n+3,..2m+ 1. (3.2)

For i # j, we put
Uij = Q05 = Ug;. (33)
By Gauss equation, for X = Z =¢;, Y = W = ¢;, we have

c—3  (3ncos?d —2n)(c+1) 2L/ 2

Lemma 3.1. For u;; we have
(a) For any fized i € {1,...,n + 1}, we have

3 (3ncos*d —2n)(c+ 1))

3wy > <b -
U5 = T — —
vy ! 4 dn(n+1)
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(b) For distinct 1,7,k € {1,...,n+ 1}, we have a? = w;juix/uji.
1
(c) For a fized k, 1 < k < {n;} and for each B € Sy, = {B C

{1,..,n+ 1} : |B| = k}, we have

e )

JEBteB

where B is the complement of B in {1,....,n + 1}.
(d) For distinct i,j € {1,...,n+ 1}, it follows that u;; > 0.

Proof. (a) From (3.2), (3.3) and (3.4), we have

c—3 (3ncos?0 —2n)(c+1)
> _ _
;“” =" <b 4 dn(n+1)

E (i (Zw) -l

r=n+3 i i
_ . <b ~c¢—=3  (3ncos®d —2n)(c+ 1))
4 dn(n + 1)
2m~+1 9
-3 (a;- (o) = (%) )
r=n-+3 J#i
. <b =3 (3n cos?d — 2n)(c + 1)>
4 dn(n+1)
2m+1 n+1 9
+ > 3 (o)
r=n+3 j=1
> n <b— c—3  (3ncos®d —2n)(c+ 1)) ~ 0
4 dn(n +1)

(b) We have w;ju/uji = a;aja;ar/a;a), = a?.
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(c) Let B=1{1,...,k} and B={k+1,...,n+ 1}. Then
c—3 (3ncos?d —2n)(c+1)
> _ _ _
S =k k+1)<b . o

JEBteB

- (B E i)

C -kt 1) (b_ c—3  (3ncos®d —2n)(c+ 1))

4 4n(n +1)

#5))

c—3 (3ncos?d —2n)(c+ 1))

M=

P E(EE

r=n+3 \j=1t=k+1 Jj=

—_

4 dn(n +1)

(d) For i # j, if u;; = 0 then @; = 0 or a; = 0. The statement
a; = 0 implies that u; = a;a; = 0 for all [ € {1,....,n+ 1}, [ # i.
Then, we get

Zuij == O,

J#i
which is a contradiction with (a). Thus, for i # j, it follows that
u;; # 0. We assume that uq ,41 < 0. From (b), for 1 <i <n+1,
we get u1;u; 41 < 0. Without loss of generality, we may assume

> k(n—k+1) (b—

ULy oo s Uil s Uil g ls - -+ Up g1 > 0, (3.5)
U1 I+1y- - , Ul n+1,U2 n+ly--- , Ug n+1 < 07
for some {%—i—l} <l <n. Ifl=n,then uy o1+ U py1 + -+ +
Up ne1 < 0, which contradicts to (a). Thus, | < n. From (b), we
get
A, = Yiniatentl (3.6)
Ui ¢
where 2 < i < [, I+ 1 <t < n. By (3.5) and (3.6), we obtain
u;; < 0, which implies that

n+1 l n n+1
Z Z Ut Z Z +Zuzn+1+ Z U1t<0
i=1t=I[+1 =2t =1 t=Il+1
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which is a contradiction to (c¢). Thus (d) is proved. O

Theorem 3.2. Let M be an (n + 1)-dimensional 8-slant submani-
fold in a (2m + 1)-dimensional Kenmotsu space form M(c). If at a
point p € M there exists a number b > (623) + G@n COZ;?;i?;(C+1)
that the sectional curvature K > b at p, then the shape operator Ay

at the mean curvature vector satisfies

such

tp,
4 An(n + 1) “wr

n (b _c—3  (3ncos’d —2n)(c+ 1)) . »

where I, denotes the identity map identified with ( 1;)” 8 ) .

Proof. Let p € M and a number b > (Cf’) + Bncoji?;i?g(cﬂ)
such that the sectional curvature K > b at p. We choose an or-
thonormal basis {eq,... €411, €n12,--. ,€ami1} at p such that e, o
is parallel to the mean curvature vector H, and ey, ... e, diag-
onalize the shape operator A, 2. Now, from Lemma 3.1 it follows

that ay, ..., a,+1 have the same sign. We assume that a; > 0 for all
jeA{l,... ,n+1}. Then

Yug=ai(a1+ -+ an1) — a;
JF
Zn(b—c_g (3n00520—2n)(c—|—1)>'

4 4n(n+1) (38)

From (3.8) and (3.1), we obtain

c—3 (3ncos?0 —2n)(c+1) )
; I|H| > b— —
IR (R ot v

. c—3  (3ncos’d —2n)
4 An(n+1
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which implies that

n b_c—3_ (3ncos?0 — 2n)(c+ 1)
+1 4 dn(n+1) '

a; || HI| >
n

Hence, we get (3.7). O

In particular, from the above theorem we have the following re-
sults.

Corollary 3.3. Let M be an (n+ 1)-dimensional invariant sub-
manifold in a (2m + 1)-dimensional Kenmotsu space form M/(c)
such that € € TM. If at a point p € M there exists a number
b > % + 4(67:31) such that the sectional curvature K > b at p, then
the shape operator Ay at the mean curvature vector satisfies

_ 1
Ay > (b—c 5ot )Q atp. (3.9

n+1 4 4(n+1)

Corollary 3.4. Let M be an (n+ 1)-dimensional anti-invariant
submanifold isometrically immersed in a (2m+1)-dimensional Ken-
motsu space form M(c) such that & € TM. If at a point p € M

there exists a number b > (023) — 2(24;11)
curvature K > b at p, then the shape operator Ay at the mean

curvature vector satisfies

c—3 c+1
b— + ) I, atp.

such that the sectional

AH>

n+1

4. k-Ricci curvature and shape operator

In this section, we establish a relation between the shape op-
erator and the k-Ricci curvature for an (n + 1)-dimensional slant
submanifold in a (2m + 1)-dimensional Kenmotsu space form.
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Theorem 4.1. Let M be an (n+ 1)-dimensional 0-slant subman-
ifold in a (2m + 1)-dimensional Kenmotsu space form M(c) such
that & € TM. Then, for any integer k,2 < k < n+1, and any
point p € M, we have

(1) If ©rlp) # G2 + Breos®0-2n)(ctl) yhen the shape operator at

4n(n+1)
the mean curvature vector satisfies
n c—3 (3ncos?d —2n)(c+ 1)
Ag > © — - I, at )
> O = =5 T a— ([il-l)
. . . . . I, 0O
where I,, denotes the identity map identified with R
(2) If O(p) = 52 + Breos il then Ay > 0 at p.
(3) A unit vector X € T,M satisfies
n c—3 (3ncos?d —2n)(c+1)
Apg(X) = O — — X
1(X) =70 = = prEe T a— (42)

if and only if ©(p) = % + (3TLCOZZQ(T—L$:’I§(C+1) and X € N,.

Proof. Let {ey,...e41 = £} be an orthonormal basis of T,M. De-

note by L;, ;, the k-plane section spanned by e;,, ..., ;. It follows
from (2.10) and (2.11) that
1 .
T(Lulk) = 5 Z R’ICLil...ik (61')’ (43>
1€{91,..,ik }
1
(p) = oF2 Yo m(Lia)- (4.4)
n—2 1<i <..<ix<n
Combining (2.12), (4.3) and (4.4), we find
n(n+1
(o) > " Ve, ) (15)

From the equation of Gauss, for X = Z =¢;, Y = W = ¢;, by
summing over {1,2,--- ,n+ 1} with respect to ¢ and j (i # j), we
obtain
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(n+1)*|H|* =
1 3 20— 2 1
HJH2+2T_n(n+ >(c—3)—< n cos n)(c+ )
4 4
(4.6)
Now we choose an orthonormal basis
{e1,... seny1 =& €nyayo oo ,Comi1}

at p such that e, is parallel to the mean curvature vector H(p),

and ey, ..., e, diagonalize the shape operator A, ,». Then we
have the relations (3.1), (3.2) and (3.4). From (4.6) we get
n+1 2m+1 n+1 nin+1
CRR I T2 CP NS P D D DG A e AP
i=1 r=n+3i,j=1 4
_ (3ncos?d —2n)(c + 1). (47
4
On the other hand, since
n+1
0<> (ai—a;)>=nd a; —2> aay,
i<j i i<j
we obtain
n+1 n+1 n+1
(n+ D H|* = (@)’ =Y af +2> wa; < (n+ 1)),
i=1 i=1 i<j i=1
which implies
n+1
doai > (n+1)|H|. (4.8)
i=1
From (4.7) and (4.8), we have
n(n+1
DA 22+ o nE) - " g

_ (3ncos?d —42n)(c + 1)7 (4.9)
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or equivalently

9 27 c—3 (3ncos?0 —2n)(c+1)
IH]]" = - - :
n(n+1) 4 dn(n + 1) (4.10)
From (29) and (34), we have
-3  (3ncos’d —2n)(c+1)
H|(p) > Oxlp) — = — .
1H]w) > €u) - )

This shows that H(p) = 0 may occur only when Oy(p) < %3 +
(3n cos?0—2n)(c+1)
4n(n+1)

(2) hold automatically. Therefore, without loss of generality, we

assume H (p) # 0. From the Gauss equation we get

Consequently, if H(p) = 0, statements (1) and

c—3 (3n cos?0 — 2n)(c + 1)
;= Ky — _
@ity = i — Ty in(n+1)
2m+1
- Z {‘7;'0;]' - (Ufj)z}- (4.12)
r=n+3
From (4.12) we have
) k—1)(c—3
ai(a, + -+ ay) = Rchlig»-ik N W
(3ncos?0 — 2n)(k — 1)(c+ 1)
dn(n +1)
2m+1 k ,
+ Z Z{(U{ij) - Uflazrjij}a (4.13)
r=n4+3 j=2
which yields
ap(ag+ -+ Fany1) =
1 ) n(c—3
e Y R, () - Y
n 2<in< i <n+1
(+%)

(3ncos?0 — 2n)(c + 1) . 2m+1 ntl

Yo X (01)? (414)

4(n+1) r=n+3 j=1
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From (2.12) and (4.14) we have

(3ncos?0 — 2n)(c+ 1)

ai(ag + -+ + ant1) > n[Ok(p) — dn(n + 1)

!

(4.15)
Then
ar(ar + -+ + ans1) = aj + ar(az + -+ + apy1)
2
> a2+ n[Oy(p) — c ; 3 (Sncozj(;inl))(c—l— 1)]
> n[Ou(p) — c ; 3 (3n coif(; _|2_n1))(c + 1)] (4.16)

Similar inequalities hold when 1 is changed by j € {2,--- ,;n+ 1}.
So we have

aj(ar + -+ ap1) > n[Ok(p) — c ; 3_Bn COZ:(; inl))(c + 1)]

(4.17)
fori € {2,--- ,n+ 1}. Then we can get
n c—3 (3ncos?d —2n)(c+1)
Ag > © — - I, atp.

The equality does not hold because H(p) # 0. So (4.1) is valid.
The statement (2) is obvious.

(3) Let X € T,M be a unit vector satisfying (4.2). By (4.14) and
(4.16) we have a; = 0 and o7; = 0 for any j € {2,--- ,n+ 1}, 7 €

{n+3,--,2m+1}. It follows that Oy (p) = 5 + recs -2nj(cil
and X € N,. The converse is clear. This completes the proof of

the Theorem 4.1. O

Corollary 4.2. Let M be an (n + 1)-dimensional invariant sub-
manifold in a (2m + 1)-dimensional Kenmotsu space form M/(c).
Then, for any integer k,2 < k < n+ 1, and any point p € M, we
have
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(1) If ©k(p) # < + ((24;11 then the shape operator at the mean

curvature vector satisfies

c—3 (c+1)
Ok(p) — - I, atp.
nr 1O T T T P (4.19)
(2) If Ox(p) = <2 + ((Cnill then Ag >0 at p.
(3) A unit vector X € T,M satisfies
n c—3 (c+1)
Apg(X) = ) — — X

if and only if O(p) = 2 + 4((c+1) and X € N,,.

(4) Ay = 25[0k(p) — 52 — (f:f 11, at p if and only if p is a
totally geodesic point.

Corollary 4.3. Let M be an (n+ 1)-dimensional anti-invariant
submanifold in a (2m+1)-dimensional Kenmotsu space form M(c).
Then, for any integer k,2 < k < n+ 1, and any point p € M, we
have

(1) If ©k(p) # 52 — 2(67#1)7 then the shape operator at the mean
curvature vector satzsﬁes

c—3 c+1
Ay > ——[6 + I, tp.

i +ﬂk() T amyn e (421)

(2) If Ok(p) = 52 — (C+1 then Ag >0 at p.

(3) A unit vector X € T,M satisfies

c—3 c+1
Ay = S X 4.22
f n+1[“> 4 +%n+D] (4.22)

if and only if O(p) = 2 — 2(‘;;“1 and X € N,,.
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