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SHAPE OPERATOR OF SLANT SUBMANIFOLDS
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Abstract. In this paper, we establish some relations between
the sectional curvature and the shape operator and also be-
tween the k-Ricci curvature and the shape operator for slant
submanifolds in Kenmotsu space forms.

1. Introduction

According to B.Y. Chen, one of the basic problems in submani-
fold theory is to find simple relationships between the main extrin-
sic invariants and the main intrinsic invariants of a submanifold.
Scalar curvature and Ricci curvature are among the main intrinsic
invariants, while the squared mean curvature is the main extrin-
sic invariant. In [4], B.Y. Chen establishes a relationship between
sectional curvature function K and the shape operator for submani-
folds in real space forms. In [5], he also gives a relationship between
Ricci curvature and squared mean curvature.
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A contact version of B.Y. Chen’s inequality and its applications
to slant immersions in a Sasakian space form M̃ (c) are given in
[3]. But there is another interesting class of almost contact metric
manifolds, namely Kenmotsu manifolds [7]. In the present paper,
we study slant submanifolds of Kenmotsu space forms and establish
relations between the sectional curvature and the shape operator
and also between the k-Ricci curvature and the shape operator for
slant submanifolds in Kenmotsu space forms.

2. Preliminaries

Let M̃ be an almost contact metric manifold [1] with an almost
contact metric structure (φ, ξ, η, g), that is, φ is a (1, 1) tensor field,
ξ is a vector field, η is a 1-form and g is a Riemannian metric on
M̃ such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0,
(2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)

g(X, φY ) = −g(φX, Y ), g(X, ξ) = η(X) (2.3)

for all X, Y ∈ TM̃ .
An almost contact metric manifold is known to be a Kenmotsu

manifold [7] if

(∇̃Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.4)

∇̃Xξ = −φ2X = X − η(X)ξ, X ∈ TM̃, (2.5)

for any vector fields X, Y on M̃ , where ∇̃ denotes the Riemannian
connection with respect to g.

We denote by Φ the fundamental 2-form of M̃ , that is, Φ (X, Y ) =

g (ϕX, Y ), for any vector fields X, Y on M̃ . It was proved that the
pairing (Φ, η) defines a locally conformal cosymplectic structure,
that is

dΦ = 2Φ ∧ η, dη = 0. (2.6)
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A plane section σ in TpM̃ of an almost contact metric manifold

M̃ is called a ϕ-section if σ ⊥ ξ and ϕ (σ) = σ. M̃ is of constant ϕ-
sectional curvature if at each point p ∈ M̃ , the sectional curvature
K̃(σ) does not depend on the choice of the ϕ-section σ of TpM̃ , and

in this case for p ∈ M̃ and for any ϕ-section σ of TpM̃ , the function

c defined by c (p) = K̃(σ) is called the ϕ-sectional curvature of M̃ .
A Kenmotsu manifold M̃ with constant ϕ-sectional curvature c is
said to be a Kenmotsu space form and is denoted by M̃(c).

The curvature tensor R̃ of a Kenmotsu space form M̃(c) is given
by [7]

4R̃ (X, Y, Z, W ) = (c− 3)[g (X, W ) g (Y, Z)− g (X, Z) g (Y,W )]

+(c + 1)[g (ϕX, W ) g (ϕY, Z)− g (ϕX, Z) g (ϕY, W )−
2g (ϕX, Y ) g (ϕZ, W ) + g (X, Z) η (Y ) η (W )−
g (Y, Z) η (X) η (W ) + g (Y,W ) η (X) η (Z)−
g (X, W ) η (Y ) η (Z)] (2.7)

for all X, Y, Z, W ∈ TM̃ .
Let M be an n-dimensional Riemannian manifold. The scalar

curvature τ at p is given by τ =
∑

i<j Kij, where Kij is the sectional
curvature of M associated with a plane section spanned by ei and
ej at p ∈ M for any orthonormal basis {e1, ..., en} for TpM . Now

let M be a submanifold of an m-dimensional manifold M̃ equipped
with a Riemannian metric g. The Gauss and Weingarten formulae
are given respectively by ∇̃XY = ∇XY + σ (X, Y ) and ∇̃XN =
−ANX + ∇⊥

XN for all X, Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇
and ∇⊥ are respectively the Riemannian, induced Riemannian and
induced normal connections in M̃ , M and the normal bundle T⊥M
of M respectively, and σ is the second fundamental form related to
the shape operator A by g (h (X,Y ) , N) = g (ANX, Y ). Then the
equation of Gauss is given by

R̃(X, Y, Z, W ) = R(X, Y, Z, W ) + g(h(X, W ), h(Y, Z))

− g(h(X, Z), h(Y, W )) (2.8)

for any vectors X, Y, Z, W tangent to M , where R̃ and R are the
curvature tensors of M̃ and M respectively.
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The relative null space of M at a point p ∈ M is defined by

Np = {X ∈ TpM |σ(X, Y ) = 0, for all Y ∈ TpM} .

Let {e1, ..., en} be an orthonormal basis of the tangent space TpM .
The mean curvature vector H at p ∈ M is

H =
1

n
trace(σ) =

1

n

n∑
i=1

σ (ei, ei) . (2.9)

The submanifold M is totally geodesic in M̃ if σ = 0, and minimal
if H = 0. If σ(X,Y ) = g(X, Y )H for all X, Y ∈ TM , then M is
totally umbilical. We put

σr
ij = g(σ(ei, ej), er), ‖σ‖2 =

n∑
i,j=1

g(σ(ei, ej), σ(ei, ej)),

where er belongs to an orthonormal basis {en+1, ..., em} of the nor-
mal space T⊥

p M .
Suppose L is a k-plane section of TpM and X a unit vector in L.

We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X.
Define the Ricci curvature RicL of L at X by

RicL(X) = K12 + K13 + ... + K1k, (2.10)

where Kij denotes the sectional curvature of the 2-plane section
spanned by ei, ej. We simply called such a curvature a k-Ricci
curvature.

The scalar curvature τ of the k-plane section L is given by

τ(L) =
∑

1≤i<j≤k

Kij. (2.11)

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on an
n-dimensional Riemannian manifold M is defined by

Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈ M, (2.12)

where L runs over all k-plane sections in TpM and X runs over all
unit vectors in L.

From now on, we assume that the dimension of M is n + 1 and
that of the ambient manifold M̃ is 2m + 1. We also assume that
the structure vector field ξ is tangent to M .
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For a vector field X in M , we put

ϕX = PX + FX, PX ∈ TM, FX ∈ T⊥M.
(2.13)

For any local orthonormal basis {e1, e2, . . . , en+1} for TpM , we can
define the squared norm of P and F by

‖P‖2 =
n+1∑
i,j=1

g (ei, P ej)
2 , ‖F‖2 =

n+1∑
i,j=1

g (ei, Fej)
2 ,

(2.14)

respectively. It is easy to show that both ‖P‖2 and ‖F‖2 are inde-
pendent of the choice of the orthonormal basis.

A submanifold M of an almost contact metric manifold with
ξ ∈ TM is called a semi-invariant submanifold or a contact CR
submanifold [8] if there exists two differentiable distributions D
and D⊥ on M such that (i) TM = D⊕D⊥⊕E , (ii) the distribution
D is invariant by ϕ, i.e., ϕ(D) = D, and (iii) the distribution D⊥ is
anti-invariant by ϕ, i.e., ϕ(D⊥) ⊆ T⊥M .

The submanifold M tangent to ξ is said to be invariant or anti-
invariant [8] according to F = 0 or P = 0. Thus, a contact CR-
submanifold is invariant or anti-invariant according to D⊥ = {0}
or D = {0}. A proper contact CR-submanifold is neither invariant
nor anti-invariant.

For each non zero vector X ∈ TpM , such that X is not propor-
tional to ξp, we denote the angle between ϕX and TpM by θ (X).
Then M is said to be slant [2] and [6] if the angle θ (X) is constant,
that is, it is independent of the choice of p ∈ M and X ∈ TpM−{ξ}.
The angle θ of a slant immersion is called the slant angle of the
immersion. Invariant and anti-invariant immersions are slant im-
mersions with slant angle θ = 0 and θ = π/2 respectively. A proper
slant immersion is neither invariant nor anti-invariant.

3. Sectional curvature and shape operator

B.Y. Chen establishes a sharp relationship between the shape
operator and the sectional curvature for submanifolds in real space
forms [5]. In this section, we establish a similar inequality between
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the shape operator and the sectional curvature for slant submani-
folds in a Kenmotsu space form.

Let M be an (n+1)-dimensional θ-slant submanifold in a (2m+
1)-dimensional Kenmotsu space form M̃(c) such that ξ ∈ TM . Let
p ∈ M and a number

b >
c− 3

4
+

(3n cos2θ − 2n)(c + 1)

4n(n + 1)

such that the sectional curvature K ≥ b at p.
Now we choose an orthonormal basis

{e1, . . . , en+1 = ξ, en+2, . . . , e2m+1}
at p such that en+2 is parallel to the mean curvature vector H, and
e1, . . . , en+1 diagonalize the shape operator An+2. Then we have

An+2 =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an+1

 , (3.1)

Ar =
(
σr

ij

)
, trace Ar =

n+1∑
i=1

σr
ii = 0,

i, j = 1, ..., n + 1; r = n + 3, ..., 2m + 1. (3.2)

For i 6= j, we put

uij = aiaj = uji. (3.3)

By Gauss equation, for X = Z = ei, Y = W = ej, we have

uij ≥ b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
−

2m+1∑
r=n+3

(
σr

iiσ
r
jj −

(
σr

ij

)2
)

.

(3.4)

Lemma 3.1. For uij we have
(a) For any fixed i ∈ {1, ..., n + 1}, we have∑

i6=j

uij ≥ n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
.
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(b) For distinct i, j, k ∈ {1, ..., n + 1}, we have a2
i = uijuik/ujk.

(c) For a fixed k, 1 ≤ k ≤
[
n + 1

2

]
and for each B ∈ Sk ≡ {B ⊂

{1, ..., n + 1} : |B| = k}, we have

∑
j∈B

∑
t∈B̄

ujt ≥ k (n− k + 1)

(
b− c + 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
,

where B̄ is the complement of B in {1, ..., n + 1}.
(d) For distinct i, j ∈ {1, ..., n + 1}, it follows that uij > 0.

Proof. (a) From (3.2), (3.3) and (3.4), we have

∑
i6=j

uij ≥ n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)

−
2m+1∑
r=n+3

σr
ii

∑
j 6=i

σr
jj

−∑
j 6=i

(
σr

ij

)2


= n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)

−
2m+1∑
r=n+3

σr
ii (−σr

ii)−
∑
j 6=i

(
σr

ij

)2


= n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)

+
2m+1∑
r=n+3

n+1∑
j=1

(
σr

ij

)2

≥ n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
> 0.

(b) We have uijuik/ujk = aiajaiak/ajak = a2
i .



88 Liu, Wang and Song

(c) Let B = {1, ..., k} and B̄ = {k + 1, ..., n + 1}. Then∑
j∈B

∑
t∈B̄

ujt ≥ k (n− k + 1)

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)

−
2m+1∑
r=n+3

 k∑
j=1

n+1∑
t=k+1

[
σr

jjσ
r
tt − (σr

jt)
2
]

= k (n− k + 1)

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)

+
2m+1∑
r=n+3

 k∑
j=1

n+1∑
t=k+1

(
σr

jt

)2
+

k∑
j=1

(
σr

jj

)
≥ k (n− k + 1)

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
.

(d) For i 6= j, if uij = 0 then ai = 0 or aj = 0. The statement
ai = 0 implies that uil = aial = 0 for all l ∈ {1, ..., n + 1}, l 6= i.
Then, we get ∑

j 6=i

uij = 0,

which is a contradiction with (a). Thus, for i 6= j, it follows that
uij 6= 0. We assume that u1 n+1 < 0. From (b), for 1 < i < n + 1,
we get u1iui n+1 < 0. Without loss of generality, we may assume

u12, . . . , u1l, , ul+1 n+1, . . . , un n+1 > 0,

u1 l+1, . . . , u1 n+1, u2 n+1, . . . , ul n+1 < 0,
(3.5)

for some
[

n
2

+ 1
]
≤ l ≤ n. If l = n, then u1 n+1 + u2 n+1 + · · · +

un n+1 < 0, which contradicts to (a). Thus, l < n. From (b), we
get

a2
n+1 =

ui n+1ut n+1

ui t

> 0, (3.6)

where 2 ≤ i ≤ l, l + 1 ≤ t ≤ n. By (3.5) and (3.6), we obtain
uit < 0, which implies that

l∑
i=1

n+1∑
t=l+1

uit =
l∑

i=2

n∑
t=l+1

uit +
l∑

i=1

ui n+1 +
n+1∑

t=l+1

u1t < 0,
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which is a contradiction to (c). Thus (d) is proved. 2

Theorem 3.2. Let M be an (n + 1)-dimensional θ-slant submani-
fold in a (2m + 1)-dimensional Kenmotsu space form M̃(c). If at a

point p ∈ M there exists a number b > (c−3)
4

+ (3n cos2θ−2n)(c+1)
4n(n+1)

such

that the sectional curvature K ≥ b at p, then the shape operator AH

at the mean curvature vector satisfies

AH >
n

n + 1

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
In at p,

(3.7)

where In denotes the identity map identified with

(
In 0
0 0

)
.

Proof. Let p ∈ M and a number b > (c−3)
4

+ (3n cos2θ−2n)(c+1)
4n(n+1)

such that the sectional curvature K ≥ b at p. We choose an or-
thonormal basis {e1, . . . , en+1, en+2, . . . , e2m+1} at p such that en+2

is parallel to the mean curvature vector H, and e1, . . . , en+1 diag-
onalize the shape operator An+2. Now, from Lemma 3.1 it follows
that a1, ..., an+1 have the same sign. We assume that aj > 0 for all
j ∈ {1, . . . , n + 1}. Then

∑
j 6=i

uij = ai (a1 + · · ·+ an+1)− a2
i

≥ n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
. (3.8)

From (3.8) and (3.1), we obtain

ai (n + 1) ‖H‖ ≥ n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
+ a2

i

> n

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
,
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which implies that

ai ‖H‖ >
n

n + 1

(
b− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

)
.

Hence, we get (3.7). 2

In particular, from the above theorem we have the following re-
sults.

Corollary 3.3. Let M be an (n + 1)-dimensional invariant sub-
manifold in a (2m + 1)-dimensional Kenmotsu space form M̃(c)
such that ξ ∈ TM . If at a point p ∈ M there exists a number
b > c−3

4
+ c+1

4(n+1)
such that the sectional curvature K ≥ b at p, then

the shape operator AH at the mean curvature vector satisfies

AH >
n

n + 1

(
b− c− 3

4
− c + 1

4(n + 1)

)
In at p. (3.9)

Corollary 3.4. Let M be an (n + 1)-dimensional anti-invariant
submanifold isometrically immersed in a (2m+1)-dimensional Ken-
motsu space form M̃(c) such that ξ ∈ TM . If at a point p ∈ M

there exists a number b > (c−3)
4

− c+1
2(n+1)

such that the sectional

curvature K ≥ b at p, then the shape operator AH at the mean
curvature vector satisfies

AH >
n

n + 1

(
b− c− 3

4
+

c + 1

2(n + 1)

)
In at p.

(3.10)

4. k-Ricci curvature and shape operator

In this section, we establish a relation between the shape op-
erator and the k-Ricci curvature for an (n + 1)-dimensional slant
submanifold in a (2m + 1)-dimensional Kenmotsu space form.



Shape operator of slant submanifolds in Kenmotsu space forms 91

Theorem 4.1. Let M be an (n + 1)-dimensional θ-slant subman-
ifold in a (2m + 1)-dimensional Kenmotsu space form M̃(c) such
that ξ ∈ TM . Then, for any integer k, 2 ≤ k ≤ n + 1, and any
point p ∈ M , we have

(1) If Θk(p) 6= c−3
4

+ (3n cos2θ−2n)(c+1)
4n(n+1)

, then the shape operator at

the mean curvature vector satisfies

AH >
n

n + 1
[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]In at p,

(4.1)

where In denotes the identity map identified with

(
In 0
0 0

)
.

(2) If Θk(p) = c−3
4

+ (3n cos2θ−2n)(c+1)
4n(n+1)

, then AH ≥ 0 at p.

(3) A unit vector X ∈ TpM satisfies

AH(X) =
n

n + 1
[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]X

(4.2)

if and only if Θk(p) = c−3
4

+ (3n cos2θ−2n)(c+1)
4n(n+1)

and X ∈ Np.

Proof. Let {e1, ...en+1 = ξ} be an orthonormal basis of TpM . De-
note by Li1...ik the k-plane section spanned by ei1 , ..., eik . It follows
from (2.10) and (2.11) that

τ(Li1...ik) =
1

2

∑
i∈{i1,...,ik}

RicLi1...ik
(ei), (4.3)

τ(p) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ(Li1...ik). (4.4)

Combining (2.12), (4.3) and (4.4), we find

τ(p) ≥ n(n + 1)

2
Θk(p). (4.5)

From the equation of Gauss, for X = Z = ei, Y = W = ej, by
summing over {1, 2, · · · , n + 1} with respect to i and j (i 6= j), we
obtain
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(n + 1)2 ‖H‖2 =

‖σ‖2 + 2τ − n(n + 1)

4
(c− 3)− (3n cos2θ − 2n)(c + 1)

4
.

(4.6)

Now we choose an orthonormal basis

{e1, . . . , en+1 = ξ, en+2, . . . , e2m+1}

at p such that en+2 is parallel to the mean curvature vector H(p),
and e1, . . . , en+1 diagonalize the shape operator An+2. Then we
have the relations (3.1), (3.2) and (3.4). From (4.6) we get

(n + 1)2 ‖H‖2 = 2τ +
n+1∑
i=1

a2
i +

2m+1∑
r=n+3

n+1∑
i,j=1

(σr
ij)

2 − n(n + 1)

4
(c− 3)

−(3n cos2θ − 2n)(c + 1)

4
. (4.7)

On the other hand, since

0 ≤
∑
i<j

(ai − aj)
2 = n

n+1∑
i

a2
i − 2

∑
i<j

aiaj,

we obtain

(n + 1)2 ‖H‖2 = (
n+1∑
i=1

ai)
2 =

n+1∑
i=1

a2
i + 2

∑
i<j

aiaj ≤ (n + 1)
n+1∑
i=1

a2
i ,

which implies

n+1∑
i=1

a2
i ≥ (n + 1) ‖H‖2 . (4.8)

From (4.7) and (4.8), we have

(n + 1)2‖H‖2 ≥ 2τ + (n + 1)‖H‖2 − n(n + 1)

4
(c− 3)

−(3n cos2θ − 2n)(c + 1)

4
, (4.9)



Shape operator of slant submanifolds in Kenmotsu space forms 93

or equivalently

‖H‖2 ≥ 2τ

n(n + 1)
− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
.

(4.10)

From (29) and (34), we have

‖H‖2(p) ≥ Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
.

(4.11)

This shows that H(p) = 0 may occur only when Θk(p) ≤ c−3
4

+
(3n cos2θ−2n)(c+1)

4n(n+1)
. Consequently, if H(p) = 0, statements (1) and

(2) hold automatically. Therefore, without loss of generality, we
assume H(p) 6= 0. From the Gauss equation we get

aiaj = Kij −
c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)

−
2m+1∑
r=n+3

{σr
iiσ

r
jj − (σr

ij)
2}. (4.12)

From (4.12) we have

a1(ai2 + · · ·+ aik) = RicL1i2···ik
− (k − 1)(c− 3)

4

−(3n cos2θ − 2n)(k − 1)(c + 1)

4n(n + 1)

+
2m+1∑
r=n+3

k∑
j=2

{(σr
1ij

)2 − σr
11σ

r
ijij
}, (4.13)

which yields

a1(a2+ · · · +an+1) =

1(
n

k − 1

) ∑
2≤i2<···<ik≤n+1

RicL1i2···ik
(e1)−

n(c− 3)

4

−(3n cos2θ − 2n)(c + 1)

4(n + 1)
+

2m+1∑
r=n+3

n+1∑
j=1

(σr
1j

)2. (4.14)
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From (2.12) and (4.14) we have

a1(a2 + · · ·+ an+1) ≥ n[Θk(p)− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
].
(4.15)

Then

a1(a1 + · · ·+ an+1) = a2
1 + a1(a2 + · · ·+ an+1)

≥ a2
1 + n[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]

≥ n[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]. (4.16)

Similar inequalities hold when 1 is changed by j ∈ {2, · · · , n + 1}.
So we have

aj(a1 + · · ·+ an+1) ≥ n[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]

(4.17)

for i ∈ {2, · · · , n + 1}. Then we can get

AH >
n

n + 1
[Θk(p)− c− 3

4
− (3n cos2θ − 2n)(c + 1)

4n(n + 1)
]In at p.

(4.18)

The equality does not hold because H(p) 6= 0. So (4.1) is valid.
The statement (2) is obvious.

(3) Let X ∈ TpM be a unit vector satisfying (4.2). By (4.14) and
(4.16) we have a1 = 0 and σr

1j = 0 for any j ∈ {2, · · · , n + 1}, r ∈
{n + 3, · · · , 2m + 1}. It follows that Θk(p) = c−3

4
+ (3n cos2θ−2n)(c+1)

4n(n+1)

and X ∈ Np. The converse is clear. This completes the proof of
the Theorem 4.1. 2

Corollary 4.2. Let M be an (n + 1)-dimensional invariant sub-
manifold in a (2m + 1)-dimensional Kenmotsu space form M̃(c).
Then, for any integer k, 2 ≤ k ≤ n + 1, and any point p ∈ M , we
have
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(1) If Θk(p) 6= c−3
4

+ (c+1)
4(n+1)

, then the shape operator at the mean

curvature vector satisfies

AH >
n

n + 1
[Θk(p)− c− 3

4
− (c + 1)

4(n + 1)
]In at p.

(4.19)

(2) If Θk(p) = c−3
4

+ (c+1)
4(n+1)

, then AH ≥ 0 at p.

(3) A unit vector X ∈ TpM satisfies

AH(X) =
n

n + 1
[Θk(p)− c− 3

4
− (c + 1)

4(n + 1)
]X

(4.20)

if and only if Θk(p) = c−3
4

+ (c+1)
4(n+1)

and X ∈ Np.

(4) AH = n
n+1

[Θk(p) − c−3
4
− (c+1)

4(n+1)
]In at p if and only if p is a

totally geodesic point.

Corollary 4.3. Let M be an (n + 1)-dimensional anti-invariant
submanifold in a (2m+1)-dimensional Kenmotsu space form M̃(c).
Then, for any integer k, 2 ≤ k ≤ n + 1, and any point p ∈ M , we
have

(1) If Θk(p) 6= c−3
4
− c+1

2(n+1)
, then the shape operator at the mean

curvature vector satisfies

AH >
n

n + 1
[Θk(p)− c− 3

4
+

c + 1

2(n + 1)
]In at p.

(4.21)

(2) If Θk(p) = c−3
4
− c+1

2(n+1)
, then AH ≥ 0 at p.

(3) A unit vector X ∈ TpM satisfies

AH =
n

n + 1
[Θk(p)− c− 3

4
+

c + 1

2(n + 1)
]X (4.22)

if and only if Θk(p) = c−3
4
− c+1

2(n+1)
and X ∈ Np.
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