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Abstract: In this paper we define coprime subcoalgebra and
we characterize finite dimensional coprime coalgebras. We then
construct a topology on coprime subcoalgebras. Finally we dis-
cuss some properties of coprime subcoalgebras and the topology

induced by this type of subcoalgebras.

Introduction and Preliminaries.

We assume the reader is familiar with topology [see, 3]. A coalgebra is

a triple (C, A, €),where C' is a vector space over a field
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and € : ¢ — K are linear maps such that (A ® I)oA = (I @ A)oA
and (e @ I)oA = (I ® €)oA = I. A subcoalgebra D of a coalgebra C
is simple if it has no non-trivial subcoalgebra. We denote the sum of
all simple subcoalgebras of a coalgebra C' by corad(C'). We say that a
coalgebra C' is semisimple if corad(C') = C, irreducible if it has a unique
non-zero simple subcoalgebra and pointed if dim(D) = 1, for all simple
subcoalgebras D.

Let V be any vector space, S a subset of V. By St C V* we
mean f € V*| < f,s>=0. If T is a subset of V*, by T+ C V we mean
{veV|< fio>=0,forallf € T}.

A subcoalgebra D of C' is conilpotent if and only if corad(C) C D.
For any subcoalgebras X and Y of a coalgebra C', we denote X AY by
ATHCQY + X @ C)or (XY )L

1. Coprime Subcoalgebras of a Coalgebra.

Definition. A non-zero subcoalgebra P of a coalgebra (' is called co-
prime if P C X AY then P C X or P C Y, for any subcoalgebras X
and Y of C.

Proposition 1.1. Let C' be a coalgebra and P be a prime ideal of
C* such that Pt = P. Then P+ is a coprime subcoalgebra of C.

Proof. (C,A,¢)is a coalgebra, hence (C*, M,U) is an algebra such
that M = A*op where p : C* @ C* — (C ® C')* is canonical injection
linear map [4, prop.1.1.1]. Let X and Y be subcoalgebras of C'. We
know that X+ and Y+ are two-sided ideals of C* and if P* C X AY =
ATMX@C+C®Y), then

A(PY) C XoC+CY
— (XJ_)J_®C_|_C®(YJ_)J_
— p(XJ_®YJ_)J_
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Hence < p(X*+ @ Y*),A(P*) >= 0 or A"op(X+* @ Y*+) C P. We
conclude that X+ C P or Y+ C P, since P is a prime ideal of C*. So
P+ C (X))t = X or P+ CY and the proof is complete.

Note: If dim(C*) < oo then the converse of Proposition 1.1 is true.

Proposition 1.2. The subcoalgebra P of a coalgebra C' is coprime
if and only if P+ is a prime ideal of C*.

Proof. Let P be a coprime subcoalgebra of C' and let A,B be two-
sided ideals of C* such that A*op(A ® B) C P+. We must show that
A C Pt or BC Pt We have < A*op(A ® B),P >= 0, so A(P) C
p(A® B)r = At @ C +C ® B*. Hence P C A+ A B+, P is coprime,
so P C A* or P C B*t. Therefore A C P+ or B C P*. The converse is
clear by Proposition 1.1. m

Proposition 1.3. Fvery simple subcoalgebra P of C is coprime.

Proof. Suppose M and N are subcoalgebras of ' and P C N A M.
Let P ¢ M. Because P is a simple subcoalgebra, so PN M = {0}.
Hence there exists f € C* such that flp = eand fly =0. PCNAM
so A(P)C N@C+C®M. Let x be an arbitrary element of P, we

have

r=ToA) = Y ez
(=)
= (Z):x(l) < f,ﬂU(z) >
(I ® [)(A(2)).

Since A(z) e NoC+C@M,sox={U® f)(A(z))e N < f,C >CN.
We conclude that P C N and the proof is complete. m

Example 1.1. Let C be a vector space with basis {C;}{2,. If
A(Cy) = C;@Cand €(Cy) = 1,i=1,2,..., then (C, A, €)is a coalgebra.
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It is clear that the subcoalgebras generated by C; (¢ = 1,2,...) are
simple, hence by Proposition 1.3, are coprimes. Let T' =< Cy, '} > be
the subcoalgebra of C' generated by Cy and ;. Since < Cy, () >C<
Co > N < Cp >but < Cy,C >< Cp > and < Cy,Cy >¢< Cy >,
so T is not coprime. It is not difficult to show that the only coprime

subcoalgebra of C' has the form < C; > (1 =1,2,...).

Example 1.2. Let C be a vector space with basis {C;}2,. If

A(C) =D C; 0 Ciy and €(Cy) = &, 1 = 1,2,..., then (C,A,€) is a
j=0
coalgebra. But < 'y > is a simple subcoalgebra of €' then it is coprime.

We have A(< Cy,Ch,...,C; >) C< Cy,Cy,y .., Cimy > 0C + C0 <
Cq >, 50 < Co,Ch,...,0; >C< Cy,Chy...,.Ciy > A< Cy >, but <
Co,Crye o, Ci > < Cyp>and < Co, Cp,y ..., Cr > < Co, Oy oo, Cily >,
Hence < Cy,C4,...,C;_1,C; > is not coprime, (note that the subcoal-
gebra generated by C; (i = 1,2,...) is equal to the subspace generated
by {Cy,C4,...,C;}). However A(C;) = ZZ:Cj ® C;_j, so the subcoalge-

j=0

bras generated by infinitly many of C;’s is equal to €' and clearly C is
coprime. We conclude that the only coprime subcoalgebras of is < Cy >

and C'.

Lemma 1.1. Let f: C — C be a coalgebra isomorphism. Then

> pl= > P

P is coprime P is coprime

Proof. First we claim that f(P) is a coprime subcoalgebra of C
where P is a coprime subcoalgebra of C'. Let X and Y be subcoalgebras
of C' such that f(P) C X AY, we have A(f(P)) CX®C+C®Y.
But f is coalgebra map, then f ® f(A(P)) C X ®C +C ®Y. Hence
PCA N AU X)YoC+C® YY) = fFHX)A fHY). Since P is
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coprime, so f(P) C X or f(P) C Y. By asimilar proof we have f~(P)
is coprime when P is a coprime and the proof is complete. m
Lemma 1.2. Let {P,}.er be a family of coprime subcoalgebras of

a coalgebra C' such that for any a,3 € I, P, C P3 or Ps C P,. Then
U P,= Z P, and it is a coprime subcoalgebra of C.

acl ael
Proof. By the assumption , we have U P, = Z P,, so it is enough
acl ael
to show that £ = U P, is a coprime subcoalgebra. It is clear that

a€el
U P, is a subcoalgebra of C'. Let (| and (5 be subcoalgebras such

a€el

that ¥ C Cy ANCy, soforany B €1, Ps CCior Ps CCy If Py CCY
and Py ¢ Cy then Py C P, or P, C Pg, for some o € I. Suppose that
Py C P, since P; € Cy, hence P, Z Cy. Therefore P, C C; and

E C (. The proof is complete. m

Lemma 1.3. Let C' be a cocommutative coalgebra and My, ..., M,
are non-zero distinct simple subcoalgebras of C'. Then My A --- AN M, =
My +---+ M,.

Proof. It is clear that M, +---+ M, C M, A --- A M,. We must
show that My A---A M, C M, +---+ M,. Since C* is a commutative
algebra, so Mj-...M}+ = M} n---n M. Now we have

(MyA---AM)Y DO Mt .Mt
= (M4 -+ M)*
Hence
(My+ -+ M) = (My+-o M)t

C (MyA---AM)*t
MyA---ANM,
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and the proof is complete. m

Note: If P, and P, are coprime subcoalgebras then P, A P; is not
necessarily coprime. For example < C; > and < (5 > are coprime (In
Example 1.1) but < C; > A < Oy >=< O] > + < Cy >=< (1,05 > is
not coprime subcoalgebra.

In the following we will characterize the finite dimensional coprime
coalgebras. A coalgebra (' is coprime if for any subcoalgebras X and
Y, C = X AY implies that C = X or €' = Y. By Proposition 1.2, a
coalgebra is coprime if and only if C* = {0} is a prime ideal of C*.

Theorem 1.1. A finite dimensional coalgebra is coprime if and only
if it is simple.

Proof. Let (' be a finite dimensional coalgebra, then C* is a finite
dimensional algebra. By [5, Example 2.3.7], C* is Artinian and by [5,
Theorem 2.3.9] every prime ideal of C* is maximal. Since C' is coprime,

C*+ = {0} is amaximal ideal of C* and {0}*+ = (' is simple. The converse

is true by Proposition 1.3.m

Proposition 1.4. Let C be a cocommutative coprime coalgebra.

Then C' has a unique simple subcoalgebra.
Proof. Since C is cocommutative, C' = @CQ, where (', is an

irreducible component of C'. We have C' = CQ@(Z Cs) C Ca/\(z Cps);

BEa BEa
since C' is coprime, ' = (C, or (' = ZC@. If C = ZC@, Then
B B#a
C, C Z Cs. Hence (', N (Z Cs) = C, # 0, which is contradiction.

BF#a B#a
We conclude that ¢' = ', and so €' has a unique simple subcoalgebra.m
Note. An infinite dimensional cocommutative pointed coalgebra
with at least two group-like elements is not neccesarily coprime. For

example, let C' be a coalgebra with basis {C;}2, with A(C;) = C; @ C;
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and €(C;) = 1, (¢ = 0,1,...). We know that ' is a cocommutative
pointed coalgebra. However (' is not coprime, because though C' =<

Co>N<C,Cq o> C#<Cy>and C #< O, Cy, -+ >,

Conjecture. Let C' be an infinite dimensional (cocommutative) coal-

gebra. If C' has a unique simple subcoalgebra then it is coprime.

Proposition 1.5. Let C' be a non-zero coprime coalgebra and D
be a coalgebra containing C' as a subcoalgebra. Then C' is a coprime

subcoalgebra of D.

Proof. Let X and Y be subcoalgebras of D and € C X A Y. We
know that X N and Y N C are subcoalgebras of €. We will show that
C=(XNC)ANY NnC). It is clear that (X NC)A (Y NnC) C C. Since

C1is a two-sided ideal of D* we have

(XNC)YA(Y NC) (X nO)YH (Y nC)yH )t
(Xt +CH (Y +Cch)t
[XJ‘YJ‘ _I_CJ_]J_

CJ_J_ a (XJ‘YJ‘)J‘
CN(XAY)

= C.

n v

Hence C = XNCorC =Y NC. Therefore CC X or CCY.m

2. Topology on Coprime Subcoalgebras.

Let C be a coalgebra and X be the set of coprime subcoalgebras on C'.
Suppose that F is an arbitrary subcoalgebra of C', V(FE) = {P € X|P C
E}, Xp=X-V(F)and 7 = {Xg|F is a subcoalgebra of C'}.

Proposition 2.1. (X, 1) is a topological space with closed sets V(E)
(or open sets Xp = X — V(F)).



52 R. Nekooei and L. Torkzadeh

Proof. Since V(C') = X and V({0}) = 0, both X, 0 belong to 7.
Let Dy and D, be subcoalgebras of C. If P € V(D) U V(D,) then
PC Dior PC Dy Let PC D, Since Dy C D+ Dy C Dy AD5,
P e V(D AD,). Conversely if P € V(D;ADj)then P C Dyor P C D,,
since P is coprime. Hence V(D; A Dy) C V(D;) UV(D;). Therefore
V(D1)UV(Dy) = V(D AD>) and hence Xp, N Xp, € 7. It is clear that
(VV(D.) = V([ Da) and hence | JXp, € 7. The proof is complete. m

Corollary 2.1. Let {E,}.cr be a family of subcoalgebras of a coal-
gebra C'. Then
’L) XEC, ﬂXEﬂ = XEC,/\Eﬂ
) X C Xg, -
EDISESRE
a€el

The equality in (it) does not necessarily hold.

Proof. The proofs of (i) and (i7) are easy. For the equality in (4¢),
let C' be coalgebra in Example 1.1. Suuppose that F; =< | > and
Ey =<y >.

Now we have

XE1+E2 = {< Cp >, < C3>,< €y >,} :XEl/\Eg 7£X :XEl UXE2 |

Proposition 2.2. Let C' be a coalgebra that is not coprime. Then
B = {Xg|F is a finite dimension subcoalgebra of C'} is a basis in topo-

logical space X .

Proof. Let P € X, there exists ¢, such that P <t > (<t > is the
subcoalgebra generated by t), for P # {0}. Now < ¢ > is finite dimen-
sional, so P € X ;5 ,and therefore X ;5 € B. Suppose that Xz and Xp
belong to Band P € XgNXp. Put T =< ¢y,...,¢,dq,...,d, >. Recall
that £ and [ are finite dimensional, and set where £ =< ¢4,...,¢; >
and F =< dy,....d, >. Since T'C F 4+ F, we have dim T < oo. If
PCT,then PC E+ FC EAF. Since P is coprime, hence P C F or
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P C F, which contradicts P € Xr N Xg. We conclude that P ¢ T, i.e.
P € X7 and therefore X7 C Xr N Xg. The proof is complete. m

Lemma 2.1. Let P be a subcoalgebra of a coalgebra C'. P is a simple

subcoalgebra if and only if P is a coprime subcoalgebra and V(P) = {P}.

Proof. Let P be a simple subcoalgebra. Then by Proposition 1.3,
P is coprime and V(P) = {P}. Conversely, suppose that £ is a non-
zero subcoalgebra of €' such that ¥ C P, then there exists a simple
subcolagebra P’ C E. But P € V(P),s0 P’ = P. Hence E=P. m

Corollary 2.2. Let E be a subcoalgebra of a coalgebra C'. Then
Xg =X if and only if £ = {0}.

Lemma 2.2. Let P be a coprime subcoalgebra of a coalgebra C.

Then {P} closed in X if and only if P is a simple subcoalgebra.

Proof. Let P be a simple subcoalgebra. By Lemma 2.1, V(P) =
{P} and so {P} is closed in X. Conversely, suppose S C P is a non-zero
subcoalgebra. Hence there exists a non-zero simple subcoalgebra P’ such
that P* C S. But V(&) = P, for some subcolagebra I, so P C IZ. We
conclude that P’ € V(F) and so P" = P = 5. The proof is complete. m

Lemma 2.3. Let P be a coprime subcoalgebra of C'. Then {P} =
V(P).

Proof. Let P, € m and P, ¢ P, so that P, € Xp. Now P, is a
limit point of { P}, hence Xp N {P} # @, and P € Xp , a contradiction.
We conclude that P, € V(P) and {P} C V(P). Now suppose that
P € V(P) and Xg is a neighborhood of P’. Hence P’ ¢ E and since
P C P, we have P € Xg. Thus P" # P € Xgp N {P} and we conclude
that P’ € {P}. m

Lemma 2.4. The topological space X is Tj.
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Proof. Suppose P, and P, are distinct points of X. If P, ¢ P, then
P, € Xp, and P, € Xp,. On the other hand, if P, ¢ P, then P, € Xp,
and P, € Xp,. m

Lemma 2.5. Let E be a subcoalgebra of a coalgebra C. If Xp = 0.

Then E is conilpotent subcoalgebra.

Proof. Let Xz = 0,80 V(F) = X. Hence P C E, for any P € X.

But every simple subcoalgebra is coprime, so corad(C)C E. m

Note: The converse of Lemma 2.5 is not true. In Example 1.2, we
showed that X = {< C, >,C}. Since the only simple subcoalgebra of
Cis < Cy > ie. corad(C) = < Cy >, and < Cy >C< Cy, ) >, thus
FE =<y, > is conilpotent, but Xg = C.

Lemma 2.6. Let C' be a coalgebra which is not coprime and C* be

a PID. If E is a conilpotent subcoalgebra then Xg = ().

Proof. Let P be a coprime subcoalgebra of C', so P is a prime
ideal of C*. But C* is a PID, so Pt is maximal. Since 0 # P = P+t
by [1, Thm. 2.3.4, p.80], P is a simple subcoalgebra. Therefore every
coprime subcoalgebra is simple. But F is a conilpotent subcoalgebra,
so IV contains all coprime subcoalgebras of C'. Hence V(F) = X or
Xp=0m

Proposition 2.3. Let C' be an irreducible coalgebra. Then X is

connected.

Proof. Suppose that X is not connected; then there exist (non-zero)
subcoalgebras £ and F of C' such that XpNXp =0 and X = XpU Xp.
Hence F and F contain a unique non-zero simple subcoalgebra P of C.
Therefore P ¢ Xg U Xp but P € X, a contradiction. We conclude that

X is connected and the proof is complete. m
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Note: The irreduciblity condition in Proposition 2.3 is necessary.
In Example 1.1, we showed that X = {< Cy >,< €} >,...}. We
know that the coalgebra ' in this example is not irreducible but X =
Xeces UXceyonos and Xeegs, X, ¢,,..> are non-empty open sets.

Hence X is not connected.

Proposition 2.4. Let C' be a coalgebra. If every coprime subcoalge-

bra of C' is simple and X is connected then C is irreducible.

Proof. Suppose that P, and P, are distinct simple subcoalgebras
of C'and T' = Y {P|P is a coprime subcoalgebra and P, ¢ P}. Hence
X = Xp, UXy and since Xt contains the only subcoalgebra P;, we have

a contradiction. The proof is complete. m

Theorem 2.1. The topological space X is compact (Lindelof) if
(i) C is irreducible or

(it) The numbers of simple subcoalgebras of C' is finite (countable).

Proof. An irreducible coalgebra has a unique simple subcoalgebra,
so it is enough to show that part (i7) is true.

Suppose that {Py,..., P,} is the set of simple subcoalgebras of '
and X C U Xg,, where {Xg_}, is a family of open sets. We claim that

if X C U;(Ea = XﬂE , then ﬂEa = {0}. If not, then ﬂEa contains

a non-zero simple subcoalgebra (coprime) which contradicts with X C

UXEa' Hence, there exist indices o; (1 <7 < n) such that P, ¢ F,,.

Therefore ﬁ FE,, ={0} and so O Xg, =Xn
i=1 i=1 ﬂ Eoz,
=1

argument we can prove that if the number of s_imple subcoalgebras of €'

= X. By a similar

is countable then the topological space X is Lindelof and the proof is

complete. m
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Note: If the set of simple subcoalgebras of a coalgebra (' is infinite
(countable) then the Theorem 2.1 is not true in general. In Example

1.1, we showed that X = {< Cy >, < C; >,...}. It is clear that

oQ
X C U Xc<c, Cipr,> which has no finite cover .
i=1

Theorem 2.2. If the topological space X is Hausdorff then every

coprime subcoalgebra of C' is simple.

Proof. Suppose that the coprime subcoalgebra P, of C'is not simple,
then there exists a non-zero simple subcoalgebra Xp, and P, such that
P, C P,. Since X is Hausdorff, there exist two open sets X, such that
P € Xg,, P, € Xg, and Xg, N Xg, = 0. Now P, € Xg, N Xg,, for if
P, & Xg, then P, C F,. Hence P, C Xp, which contradicts P, € Xg,.
We conclude that Xp, N Xz, # 0, a contradiction; hence P; is a simple

subcoalgebra and the proof is complete. m

Proposition 2.5. Let C be an irreducible coalgebra. Then the topo-
logical space X is not Hausdorff. (Assume that | X|> 2.)

Proof. Every non-zero subcoalgebra of C' contains the unique simple
subcoalgebra P of C'. So for every open set Xg, P ¢ Xg, unless F = {0}.
Hence Xg = X and we conclude that open sets, containing P’ and
having no intersection with X, do not exist, for any P # P’ € X.
Therefore X is not Hausdorff and the proof is complete. m

Lemma 2.7. If every coprime subcoalgebra of a coalgebra C' is simple

then the topology of X is discrete.

Proof. Suppose that P, € £ and
T = Z{P|P is a coprime subcoalgebra such that P, ¢ P}

Put F = X5p. Since Py is the only of F’; the open set F' contains P, has
an intersection with E only at point P;. Hence P; is an isolated point

of F/ and we conclude that the topology of X is discrete. m
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Corollary 2.3. Let C' be a coalgebra such that every coprime sub-
coalgebra of C' is simple. Then the following conditions are satisfied:
i) The topological space X is regular, normal, totally disconnected and
locally connected.

1) Urysohn’s lemma and Tietze’s extension theorem holds for C.

Proposition 2.7. The sum of all coprime subcoalgebra of a coalgebra

C' is coprime if and only if X is an irreducible topological space.

Proof. Let P' =Y {P|P is a coprime subcoalgebra of C'}. Suppose
that P’ is coprime and Xy, Xp are two non-empty open sets. Let
P CEANF,sothat PP C For PP CFE. If PP CFEorP CF then
every coprime subcoalgebra is contained in £ and hence Xp = 0, a
contradiction. Therefore P’ ¢ E A F,and hence P’ € Xpap = Xg N Xp.
We conclude that Xp N Xp # 0 and so X is irreducible. Conversely,
suppose that X is irreducible. We claim that P’ is coprime. Let P’ C
Dy A D,, for some subcoalgebras D, and D, of C'. Suppose P' ¢ D,
and P" ¢ D,. Then there exist coprime subcoalgebras P, ¢ D; and
Py, ¢ Dy. Thus Xp, # 0 and Xp, # 0. If Xp, N Xp, # 0, then there
exists a coprime subcoalgebra P, such that P, € Xp, N Xp,. Hence
Py & DyADyand so P ¢ Dy A D5, which contradicts to our assumption.
Therefore we have Xp, N Xp, = 0, we have a contradiction. The proof

is complete. m

Proposition 2.8. Let C' be a coalgebra. If C' has no conilpotent
subcoalgebra then E = {P|P is a simple subcoalgebra} is a dense subset

of X.

Proof. We claim that £ = X. Since £ C X, s0 £ C X. Now
we prove that X C F. Let P be an arbitrary element of X. If P is
simple then P € E C E. Now suppose that P is not simple. let Xy be

an arbitrary open set containing P. Since F'is not conilpotent, hence
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there exists a simple subcoalgebra M # P such that M ¢ F. Then
M € Xp N FE and so P is a limit point of E. Therefore P € E' C E. m

Corollary 2.4. Let C' be a coalgebra. If C' has no conilpotent sub-
coalgebra and the set of simple subcoalgebras of C' is countable then the

topological space X is separable.
Proof. It is clear by Proposition 2.8. m

Proposition 2.9. Let C be a coalgebra and every coprime subcoal-
gebra of C' be simple. Then
i) The topological space X is not connected if | X| > 2.
i1) If | X| = oo then X is not compact.
i1t) The principle T is satisfied for X.

Proof. (i): Let F be a proper subset of X. By Lemma 2.7, F is
both closed and open. Hence X = FU(X\Z)and so X is not connected.

(i1): Let {P,}.er be the family of all coprime subcoalgebras of
C. Put E; = > P,. We claim that Py € Xp,. If P; ¢ Xp, then

a#fp
Py C Z P,. Since every coprime subcoalgebra is simple there exists a
a#fp
coprime subcoalgebra P,, v # [ such that P; C P,. Hence P; = P,, a

contradiction. It is clear that Xp, = {Ps} and Xp, N Xg, = 0 and so

the cover U Xg, for X has no finite cover. Hence X is not compact.

8
(iii): Let P, and P> be two distinct elements of X. Since Xp, (Xp,)
contains all coprime subcoalgebras except Py(P), so Xp, and Xp, are
two disjoint open sets that contain P, and P, respectively. Therefore X

satisfies T and the proof is complete. m

Note: If a coalgebra C has a coprime subcoalgebra that is not simple
then the principle T} does not necessarily hold for X.

For example, in Example 1.2, we show that X = {< Cy >,C'}. Let
Xg and Xp be open sets containing €' and < 'y > respectively. Since ('
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is an irreducible coalgebra, so F' = {0}. Hence Xp = {< Cy, >,C} D Xp
and the principle T} does not hold.

Proposition 2.10. Let C' be a coalgebra and V., = {M,} such that
M, ’s are all simple subcoalgebras of C'. If every coprime subcoalgebra

of C' contains a finite number of simple subcoalgebras then the family

B ={V,}a is locally finite.

Proof. Let P be an arbitrary element of X and put F' = > {M,|M, ¢
P}. Tt is easy to show that P € Xp. We claim that Xp has a finite
intersection with B. Suppose that {M,,,..., M,,} C P. First we show
that M,, € Xp, for all ¢, 1 <7 < n. Suppose there exists 1 < 7 < n,
such that M,, ¢ Xp. Thus there exists M, such that M,, = M., which
is in contradiction with M,, C P. We conclude that Xp NV, # (0, for
all i, 1 < ¢ < n. Finally we show that Xp NV, = 0, for any a # «a;
(1 << n). Suppose that M, € Xp, so M, C P. This contradicts with

a # «a; and the proof is complete. m

Proposition 2.11. The coalgebra C is irreducible if and only if
every pair of non-empty closed sets in the topological space X have a

non-empty intersection.

Proof. Let ' be an irreducible coalgebra and V(E;) and V(F>) be
two non-empty closed sets in X. Hence £, N Ey # {0}. Note that a
coalgebra is irreducible if and only if the intersection of two non-zero
subcoalgebras is non-zero, and so there exists a simple subcoalgebra
M C FEy N FE,y. Hence M € V(E,) N V(FE,). Conversely, suppose that
FE, and F, are non-zero two subcoalgebras of C'. By Corollary 2.2,
V(E,) #0,V(E,) # 0, and by assumption V(F;) NV (FEy) # 0 ,s0 there
exists a coprime subcoalgebra P € V(F,)NV (F;). Hence P C KN E>.m

Theorem 2.3. Let C be a coalgebra. Then the following conditions
hold.
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(i) If P is a coprime subcoalgebra of C' then Y = V(P) is an irreducible
subspace of the topological space X .
(it) If Y = V(P) is an irreducible component then P is a maximal

coprime subcoalgebra.

Proof. (i): Let U; and U, be non-empty open sets in Y. Then
there exist open sets Xpg, and Xg, of X such that U; = Y N Xg, and
Us =Y N Xg,. Therefore there exist two coprime subcoalgebras P, and
P, such that P, € Uy and P, € Us,. It is easy to show that P ¢ F; and
P ¢ E5. Hence P € Uy NU,y, s0Y is an irreducible subspace of X.

(i1): Let P, be a coprime subcoalgebra of C' such that P C P.
V(P) C V(P), also V(P;) is an irreducible subspace of X, so V(P) =
V(P;). Hence P = P, and the proof is complete. m

Lemma 2.8. Let C be a coalgebra and Y = {P;}?_, be an irreducible
subspace of X. Then for any v, 1 <1 < mn, there exists j, 1 < j < n such
that P; C P; or P; C P;.

J

Proof. Suppose that there exists j, 1 < j < n, such that for any i,
1<i<n, P ¢ Pyand P ¢ P Put Vi = Xp NY and Vo = XpNY
such that ' =Y {P, € Y|P, # P;}. Wehave VNV, =0, V; = Y\{F;}
and V, = {P;} which is a contradiction. Hence P; C P; or P; C P, and

the proof is complete. m

Theorem 2.4. Let f: C — D be a coalgebra map and X = {P|P
is a coprime subcoalgebra of C'}, Y = {P|P is a coprime subcoalgebra of
D)

(i) If P € X then f(P)€Y.

(i1) Define ¢ : X — Y by ¢(P) = f(P), for any P € X. Then ¢ is
continuous.

(it2) If every coprime subcoalgebra of C' is the inverse image of a

subcoalgebra of D then ¢ is one-to-one.



Topology on coalgebras 61

(iv) If f is one-to-one so is .
(v) If ¢ is onto and f is one-to-one then ¢ is a closed and open map.

(vi) If f is one-to-one and onto so is ¢ and ¢~ is continuous.

Proof. (i) Since P is a coprime subcoalgebra of C' and f is a coal-
gebra map, then f(P) is a subcoalgebra of D and P is a prime ideal of
C*. Now (f*)~}(P*) is a prime ideal of D*, since f*: D* — C* is an
algebra map. Also (f*)"'(P*) = (f(P))*, so (f(P))* is a prime ideal
of D*. Hence by Proposition 1.2, f(P) is a coprime subcoalgebra of D
and the proof of part (¢) is complete.

(i7) By (7), ¢ is well-defined. Suppose that F is a subcoalgebra of D.
We claim that ¢~ (Yg) = X;-1(g). P € Xj-1(p if and only if f(P) ¢ E
which is equivalent to P € ¢~'(Yg).

E is a subcoalgebra of D and f~'(E) is a subcoalgebra of C, so
Xj-1(p) is open in X. Hence ¢ is continuous.

(i17) Let P, Py € X and ¢(P1) = ¢(FP2). Hence f(P) = f(P).
By assumption there exist subcoalgebras of D, say D; and D, such
that f~*(D;) = P, and f~*(D,) = P,. We denote f~(E) = (F)° and
f(E"y = (F£")°. Then Di* = D5* and therefore Df = Di** = D5** = D3,
Thus P, = D{ = D5 = P,

(iv) Clear.

(v) Suppose that V(£) is a closed in X. It is easy to show that
G(V(E)) = V(F(E)) and Yy(5) = 9(X5).

(vi) We must show that ¢ is onto. Let P’ be a coprime subcoalgebra
of D. Hence f~'(P’) is a coprime subcoalgebra of C' and ¢(f~}(P’)) =
P’. Therefore ¢ is onto. Since ¢ is onto and f is one-to-one, so ¢ is an
open map. Thus the inverse image of an open set under ¢ is also open,

so ¢! is continuous and the proof is complete. m

Let D be a subcoalgebra of a coalgebra C' and rad(D) be the sum

of all coprime subcoalgebras of (' contained in D. It is clear that
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V(rad(D)) = V(D).

Theorem 2.5. There is a one-to-one corespondence between the set
of closed subsets of X and the set of subcoalgebras D of C' such that
rad(D) = D.

Proof. Put A={Y : Y C X} and T(Y) = >_ Pand T(0) = C.

PeY
Define a map ¢ : A — {D|Dis a subcoalgebra of C'} by ¢(Y) = T(Y),

for any Y € A. It is easy to show that
(i) ¢ is an increasing map
(1) T(V(E)) = rad(E),
(iid) T(|J Y1) = S 7).
el el o —
Now we show that V(T(Y)) = Y. Since Y C V(T'(Y)),hence Y C

V(T'(Y)). Let P € V(T(Y)) and P ¢ Y. We claim that P is a limit
point of Y. Let Xg be a neighborhood of P. So P ¢ FE and there
exists P € Y such that P, ¢ F, because if for every P € Y, P C F,
then Z P’ C F,is contradiction. Hence P, € XpNY and so P €Y.

Pley

Therefore if Y is a closed subset of X then V(T'(Y)) = Y. Suppose
that D is a subcoalgebra of C' such that rad(D) = D, so T(V(D)) =
rad(D)=D.m

Conclusion

In this paper using the concepts of Zariski topology on rings and with
the help of coprime subcoalgebras we have been able to construct a
topology on coalgebras. So perhaps it seems that there is a one-to-one
correspondence between the properties of coprime subcoalgebras C' with
the correspoding topology and the properties of the prime ideals of C*
with its topology (with duality). But the following statements reject the

above.
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i) In example 1.2, we proved that the only coprime subcoalgebras of C'
are < Cy > and C. But (' is not a simple subcoalgebra. Recall that in
a commutative ring with identity, every maximal ideal is prime.

ii) In proposition 1.3, we proved that every simple subcoalgebra is co-
prime. But the dual of this statement is not true in every ring.

iii) In lemma 2.7, we proved that if every coprime subcoalgebra of C' is
simple then every subset of X is closed and open. But in C* the dual of
this statement is not hold [2, page 14].

We have started to continue the use of this topology in non-commutative

algebraic geometry and we hope to get more results .
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