
Bulletin of the Iranian Mathematical Society Vol. 34 No. 2 (2008), pp 97-114.

A NOTE ON STRONGLY QUOTIENT GRAPHS

R. K. ZAFERANI

Communicated by Jamshid Moori

Abstract. The notion of strongly quotient graph was introduced
by Adiga et al. [3]. Here, we show that some well known families
of graphs are strongly quotient graphs. We also establish an upper
bound for the energy of a strongly quotient graph with respect to
the distance matrix.

1. Introduction

During the past forty years or so an enormous amount of research
has been done on graph labeling, where the vertices are assigned val-
ues subject to certain conditions. These interesting problems have been
motivated by practical problems. Applications of graph labeling have
been found in x-ray, crystallography, coding theory, radar, circuit de-
sign, astronomy and communication design. Particularly interesting ap-
plications of graph labeling can be found in Bloom and Golomb [4, 5].
Recently, Adiga et al. [3] have introduced the notion of strongly quo-
tient graphs and studied them. Throughout this paper, by a labeling f
of a graph G of order n we mean an injective mapping,

f : V (G) −→ {1, 2, . . . , n}.
We define the quotient function,

fq : E(G) → Q
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by

fq(e) = min { f(v)
f(w)

,
f(w)
f(v)

}

if e joins v and w. Note that for any e ∈ E(G), 0 < fq(e) < 1.

A graph with n vertices is called a strongly quotient graph if its ver-
tices can be labeled with 1, 2, . . . , n, such that the quotient function fq

is injective; i.e., the values fq(e) on the edges are all distinct. Through-
out this paper, SQG stands for strongly quotient graph of order n with
maximum number of edges.

In [3], Adiga et al. showed that only a few complete graphs and
complete bipartite graphs are strongly quotient graphs, and they also
established that all cycles, wheels and grids are strongly quotient graphs.
They derived an explicit formula for µ(n), the maximum number of edges
in a strongly quotient graph of order n. In [1], Adiga and Zaferani have
established that the clique number ω(G) and chromatic number χ(G)
are both equal to 1 + π(n), where π(n) is the number of primes not
exceeding n. They also determined the size of a maximal independent
set α(G) and the minimum defining set d(G,χ) of a strongly quotient
graph of order n. Adiga and Zaferani [2] obtained two eigenvalues of
SQG and an upper bound for the energy of SQG with respect to the
adjacency matrix.

The remainder of this paper organized as follows. In Section 2, we
show that some families of graphs like P2×Cn, P3×Cn, P2�Cn, Cn�Pm,
ladder, triangular ladder, star, double star, Sn1,n2,n3 , fan and Kα,n−α are
strongly quotient graphs. In Section 3, we obtain two eigenvalues of SQG
and an upper bound for the energy of SQG with respect to the distance
matrix.

2. Some new families of strongly quotient graphs

Definition. A cartesian product G1 and G2, denoted by G = G1 ×G2,
is a graph G such that V (G) = V (G1)×V (G2) and (x1x2)(y1y2) ∈ E(G)
if and only if x1 = y1 and x2y2 ∈ E(G2), or x2 = y2 and x1y1 ∈ E(G1).
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Definition. A path of length n − 1, denoted by Pn, is a sequence of
distinct edges v1v2, v2v3, . . . , vn−1vn with vivi+1 ∈ E(Pn). A closed path,
with v1 = vn, is called a cycle or a circuit and denoted by Cn−1.

Theorem 2.1. P2 × Cn is a strongly quotient graph.

Proof. For n = 3, we label the vertices of P2×C3 as shown in Fig. 2.1.

3

2

54

61

Figure 2.1

We can arrange the values of edges of P2×C3 in an increasing sequence,

{ 1
6
,
1
4
,
1
3
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
5
6
}.

Hence, P2 × C3 is a strongly quotient graph.
For n ≥ 4, we label the vertices of P2 × Cn as shown in Fig. 2.2.

n

2n

n+1

1

. ..

. ..

2

n+2

3

n+3

54

n+5n+4

Figure 2.2
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We can arrange the values of edges of P2×Cn in an increasing sequence,

{ 1
2n
,

1
n+ 2

,
1

n+ 1
,

2
n+ 2

,
2

n+ 1
,

3
n+ 3

,

4
n+ 4

, . . . ,
n

2n
,
2
3
,
3
4
, . . . ,

n

n+ 1
,
n+ 2
n+ 3

,
n+ 3
n+ 4

, . . . ,
2n− 1

2n
}.

Hence, P2 × Cn is a strongly quotient graph.

Theorem 2.2. P3 × Cn is a strongly quotient graph.

Proof. For n = 3, we label the vertices of P3×C3 as shown in Fig. 2.3.

3

9

54

67

2 18

Figure 2.3

It is clear that the values of edges of P3 ×C3 are all distinct, and hence
P3 × C3 is a strongly quotient graph.
For n > 3 (n odd), we label the vertices of P3×Cn as shown in Fig. 2.4.

n-1 n

2n-1 2n

3n-1 1

. ..

. ..

. ..

3n

n+1

32

n+3n+2

2n+2 2n+32n+1

Figure 2.4
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Using the fact that x/y < (x+1)/(y+1) whenever x < y, we can arrange
the values of edges of P3 × Cn in an increasing sequence,

{ 1
3n− 1

,
1

2n+ 1
,

1
2n
,

2
3n
,

2
n+ 2

,
3

n+ 3
,

4
n+ 4

, . . . ,
n−1

2

n+ n−1
2

,
n

3n
,

n+1
2

n+ n+1
2

,
n+ 1
3n

,
1 + n+1

2

n+ 1 + n+1
2

, . . . ,
n− 1
2n− 1

,
n

2n
,
n+ 1
2n+ 1

,
n+ 2
2n+ 2

, . . . ,
2n− 1
3n− 1

,

2
3
,
3
4
, . . . ,

n− 2
n− 1

,
n− 1
n

,
n+ 1
n+ 2

, . . . ,
2n− 1

2n
,
2n+ 1
2n+ 2

, . . . ,
3n− 2
3n− 1

}.

From Fig. 2.5, it is clear that P3 × C4 is a strongly quotient graph.

4

7

15

119

2 123

8

6

10

Figure 2.5

For n > 4 (n even), we label the vertices of P3×Cn as shown in Fig. 2.6.

n+1n n+2

2n+12n 2n+2

1 3n 2

.. .

.. .

.. .

3

n+3

54

n+5n+4

2n+4 2n+52n+3

Figure 2.6
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We can arrange the values of edges of P3×Cn in an increasing sequence,

{ 1
3n
,

1
3n− 1

,
1
2n
,

2
3n
,

2
2n+ 3

,
2

2n+ 2
,

3
n+ 3

,
3

n+ 2
,

4
n+ 4

,
5

n+ 5
, . . . ,

n+ 2
2n+ 2

,
n+ 3
2n+ 3

,
n+ 4
2n+ 4

,
n+ 3
2n+ 2

,
n+ 5
2n+ 5

, . . . ,
2n− 1
3n− 1

,
2n+ 1

3n
,
3
4
,

. . . ,
n+ 1
n+ 2

,
n+ 3
n+ 4

, . . . ,
2n

2n+ 1
,
2n+ 1
2n+ 2

,
2n+ 3
2n+ 4

, . . . ,
3n− 2
3n− 1

}.

Hence, P3 × Cn is a strongly quotient graph. �

Definition. A crown product of G1 and G2, denoted by G = G1 �G2,
is defined as follows: Fix a vertex v in G2. Take | V (G1) | copies of G2

and attach the i-th copy of G2 to the i-th vertex of G1 by identifying
the vertex v in the i-th copy of G2 with the i-th vertex of G1.

Theorem 2.3. P2 � Cn, n ≥ 3, is a strongly quotient graph.

Proof. We label the vertices of P2 � Cn as shown in Fig. 2.7.

&%
'$

&%
'$1 qp p+1

.
. .

... q
2nn+1
q

q q qqqq n

. . .

3

2
p-1

Figure 2.7

In Fig. 2.7, p is a prime number with n < p < 2n. Such a prime exists by
Bertrand’s Postulate [10]. We can arrange the values of edges of ladder
in an increasing sequence,

{ 1
p
,
1
n
,
1
2
,
n+ 1
2n

,
2
3
,
3
4
, . . . ,

n− 1
n

,
n+ 1
n+ 2

,

n+ 2
n+ 3

, . . . ,
p− 1
p

,
p

p+ 1
, . . . ,

2n− 1
2n

}.

Hence, P2 � Cn is a strongly quotient graph. �

Theorem 2.4. Cn � Pm is a strongly quotient graph.
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Proof. We label the vertices of Cn � Pm as shown in Fig. 2.8.

�
�

�
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
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(n-1)m+1
(n-1)m+2

@
@
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e

e

. .

r

r
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r
...
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Cn

m

m+1m+2 r

2m

2

3m

.

2m+1

2m+2
r...

1

Figure 2.8

Then values of edges are of the form,

{ 1
2
,
2
3
,
3
4
, . . . ,

m

m+ 1
,
m+ 1
m+ 2

, . . . ,
2m− 1

2m
,

2m+ 1
2m+ 2

, . . . ,
3m− 1

3m
,
3m+ 1
3m+ 2

, . . . ,
nm− 1
nm

},

{ m+ 1
2m+ 1

,
2m+ 1
3m+ 1

,
3m+ 1
4m+ 1

, . . . ,
(n− 2)m+ 1
(n− 1)m+ 1

}.

Since x/y < (x+1)/(y+1) whenever x < y, it follows that the members
of the first set are increasing. Similarly, members in the second set are
also increasing for

km+ 1
(k + 1)m+ 1

<
(k + 1)m+ 1
(k + 2)m+ 1

, k = 1, 2, ..., (n− 3).
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Moreover, these two sets are disjoint. Hence, Cn � Pm is a strongly
quotient graph. �

Definition. A ladder Ln is a graph K2 × Pn with

V (Ln) = { ui, vi : 1 ≤ i ≤ n },
and

E(Ln) = { uiui+1, vivi+1 : 1 ≤ i ≤ n− 1 } ∪ { uivi : 1 ≤ i ≤ n }.

Theorem 2.5. Ladder is a strongly quotient graph.

Proof. We label the vertices of ladder as shown in Fig. 2.9.

n

2n

n+1

1

. ..

. ..

2

n+2

3

n+3

54

n+5n+4

Figure 2.9

We can arrange the values of edges of ladder in an increasing sequence,

{ 1
2n
,

1
n+ 1

,
2

n+ 2
,

3
n+ 3

,
4

n+ 4
, . . . ,

n

2n
,
2
3
,

3
4
, . . . ,

n

n+ 1
,
n+ 2
n+ 3

, . . . ,
2n− 1

2n
},

so that all edges have different values. Hence, ladder is a strongly quo-
tient graph.

Definition. A triangular ladder Ln, n ≥ 2, is a graph obtained by
completing the ladder Ln ' Pn × P2 by adding the edges uivi+1, for
1 ≤ i ≤ n− 1.

Theorem 2.6. Triangular ladder is a strongly quotient graph.

Proof. For n = 2 and n = 3, respectively, we label the vertices of tri-
angular ladder as shown in Figures 2.10 and 2.11.
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Figure 2.10
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Figure 2.11

We can arrange the values of edges of triangular ladder in an increasing
sequence,

{1
4
,
1
3
,
1
2
,
2
3
,
3
4
},

{ 1
6
,
1
5
,
1
4
,
1
3
,
1
2
,
3
5
,
2
3
,
4
5
,
5
6
},

and for n ≥ 4, we label the vertices of triangular ladder as shown in Fig.
2.12.
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@
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2

n+2

3

n+3

54

n+5n+4

Figure 2.12

Using the fact that k
n+k <

k+1
n+k+2 for k < n, we can arrange the values

of edges of triangular ladder in an increasing sequence,

{ 1
2n
,

1
n+ 1

,
1
n
,

2
n+ 3

,
2

n+ 2
,

3
n+ 4

,
3

n+ 3
, . . . ,

n− 1
2n

,

n

2n
,
2
3
,
3
4
, . . . ,

n

n+ 1
,
n+ 2
n+ 3

, . . . ,
2n− 1

2n
}.

Hence, triangular ladder is a strongly quotient graph. �
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Definition. A caterpillar is a graph derived from a path by hanging
any number of leaves from the vertices of the path. The caterpillar can
be seen as the union of a sequence of stars S1 ∪S2 ∪ . . .∪Sr, where each
Si is a star with center ci and ni leaves, i = 1, 2, 3, . . . , r, and the leaves
of Si include ci−1 and ci+1, i = 2, 3, . . . , r− 1. We denote the caterpillar
as Sn1,n2,...,nr , where the vertex set is:

V (Sn1,n2,...,nr) = {ci : 1 ≤ i ≤ r} ∪
r−1⋃
i=2

{xj
i : 2 ≤ j ≤ ni − 1}

∪ {xj
1 : 1 ≤ j ≤ n1 − 1} ∪ {xj

r : 2 ≤ j ≤ nr},

and the edge set is:

E(Sn1,n2,...,nr) = {cici+1 : 1 ≤ i ≤ r − 1} ∪
r−1⋃
i=2

{cixj
i : 2 ≤ j ≤ ni − 1}

∪ {c1xj
1 : 1 ≤ j ≤ n1 − 1} ∪ {crxj

r : 2 ≤ j ≤ nr}.

If r = 2 then the graph is called a double star.

Theorem 2.7. Star is a strongly quotient graph.

Proof. Let p be the largest prime less than or equal to n. In Fig. 2.13,
we give a labeling showing that star is a strongly quotient graph.

�
�

�
�

@
@

n
1

2

3p-1

p+1
p

...

. ..
Figure 2.13

Observe that (p,m) = 1, for m = 1, 2, ..., p− 1, p+ 1, ..., n. This implies
that k/p 6= p/l for k = 1, 2, ..., p− 1 and l = p+ 1, ..., n, and hence the
edge values are all distinct. �

Theorem 2.8. Double star is a strongly quotient graph.
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Proof. We suppose that n1 ≥ n2. Then, we label c1 = 1, c2 = 2, we as-
sign odd numbers 3, 5, 7, . . . , 2n2−1, on n2−1 leaves and even numbers
greater than 2 and the remaining odd numbers on n1− 1 leaves (see Fig
2.14).

�
�

�
�

@
@

�
� . . .

9

7
5

3

2n2 − 1

2
�

�

��� �
�

@
@

J
J

J

.
..

. . .
1

6

2n2 + 2

2n2 + 1

4

8

n1 + n2

2n2

Figure 2.14

Then, values of edges are of the form:

{2
3
,
2
5
,
2
7
, . . . ,

2
2n2 − 1

},

{1
4
,
1
6
,
1
8
, . . . ,

1
2n2

,
1

2n2 + 1
,

1
2n2 + 2

, . . . ,
1

n1 + n2
}.

It is easy to check that all these values are distinct. Hence, double star
is a strongly quotient graph. �

Theorem 2.9. Sn1,n2,n3 is a strongly quotient graph.

Proof. Suppose that n1 ≥ n2 ≥ n3. Then, we label c1 = 1, c2 = p and
c3 = 2, where p is the largest prime less than or equal to the number of
vertices of Sn1,n2,n3 , namely n1+n2+n3−1. If p > 2n3−1, then we label
n3−1 leaves with odd numbers 3, 5, 7, ..., 2n3−1. If p ≤ 2n3−1, then we
label n3−1 leaves with odd numbers 3, 5, ..., p−2, p+2, ..., 2n3−1, 2n3+1.
We assign the remaining n1 + n2 − 3 numbers on the other leaves. �

Definition. A fan graph Fn can be constructed from a wheel Wn+1

with n spokes by deleting one edge on the n−cycle.

Theorem 2.10. Fan is a strongly quotient graph.
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Proof. For n = 3, we label the vertices of a fan as shown in Fig. 2.16.

�
�

�
�

@
@

@
@

4

231
Figure 2.16

We can arrange the values of edges of a fan in an increasing sequence,

{ 1
4
,
1
3
,
2
4
,
2
3
,
3
4
},

and for n > 3, we label the vertices of the fan as shown in Fig. 2.17.
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�
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B
B
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�
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.
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p-1p+1 1

p 2n+1

3n

Figure 2.17

Here, p is the largest prime less than or equal to n+ 1. Then, values of
edges are of the forms,

{ 1
p+ 1

,
1
p
,

1
p− 1

,
2
p
,
3
p
, . . . ,

p− 1
p

},

{ p

n
,

p

n− 1
,

p

n− 2
, . . . ,

p

p+ 1
},

and

{ 2
3
,
3
4
,
4
5
, . . . ,

p− 2
p− 1

,
p+ 1
p+ 2

,
p+ 2
p+ 3

, . . . ,
n

n+ 1
}.

It is easy to check that all these values are distinct. Hence, a fan is a
strongly quotient graph. �
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Theorem 2.11. The bipartite graph Kα,n−α is a strongly quotient graph,
where,

P = { p | p is prime and n
2 < p < n }, α = |P |+ 1.

Proof. Let V1 = { p1, p2, . . . , pα−1, n }, where the pi are distinct mem-
bers of P and V2 = {k : 1 ≤ k < n, k /∈ V1}.

Define,
Ai = {m : 1 ≤ m < pi, pi ∈ P},

Bi = {l : l < n & l > pi, pi ∈ P}.

Then, values of edges are of the forms m
pi

, pi

l and k
n , where m ∈ Ai, l ∈

Bi, i = 1, 2, . . . , α − 1, k < n and k /∈ P . It is easy to check that all
these values are distinct. �

3. An upper bound for the energy of strongly quotient graph
with respect to the distance matrix

Let G be a connected graph with n vertices and m edges. The ver-
tices of G are labeled as v1, v2, . . . , vn. The distance between the vertices
vi and vj is the length of the shortest path between vi and vj in G and
is denoted by d(vi, vj).

Throughout this section, by distance between j and k we mean the
distance between vertices u and v having labels j and k. The distance
matrix D(G) = [dij ] of a graph G is a square matrix of order n in which
dij = d(vi, vj). The characteristic polynomial of the distance matrix of G
is ψ(G; γ) = det(γI−D(G)), where I is the unit matrix of order n. The
roots of ψ(G; γ) = 0 are the eigenvalues ofD(G) and they are denoted by
γ1 ≥ γ2 ≥ . . . ≥ γn, [6], [7], [8], [9]. The energy of a graph G with respect
to the distance matrix is defined as the sum of the absolute values of the
eigenvalues of G and denoted by E(G). In this section, we obtain two
eigenvalues of SQG and obtain an upper bound for the energy of SQG
with respect to the distance matrix. We need the following result due
to Ramane and Revankar [11].

Theorem 3.1. Let G be a connected graph. If γ1, γ2, . . . , γn are the
eigenvalues of D(G) then
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n∑
i=1

γi = 0,

and
n∑

i=1

γ2
i = 2

∑
1≤i≤j≤n

d(vi, vj)2. (3.1)

Theorem 3.2. If G is an SQG, then −1 is an eigenvalue of G with
multiplicity greater than or equal to | P |, where,

P = { p | p is prime and n
2 < p ≤ n }.

Proof. Let p be any prime number such that n
2 < p ≤ n. In an SQG,

vertices with labels p and 1 are adjacent to every other vertex. We recall
that an SQG is a strongly quotient graph with the maximum number
of edges for a fixed order. Thus, if j 6= p and j 6= 1 then the distance
between p and j is 1, as well as the distance between 1 and j. Hence,

c1 c2 c3 c4 . . . cp . . . cn

D(G) =

R1

R2

R3

R4
...
Rp
...
Rn



0 1 1 1 . . . 1 . . . 1
1 0 1 2 . . . 1 . . . a2

1 1 0 1 . . . 1 . . . a3

1 2 1 0 . . . 1 . . . a2
...
1 1 1 1 . . . 0 . . . 1
...
1 a2 a3 a2 . . . 1 . . . 0


where,

a2 =

{
2 if n ≡ 0 (mod 2),
1 otherwise,

a3 =

{
2 if n ≡ 0 (mod 3),
1 otherwise,
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and so on.
So, the characteristic polynomial ψ(G; γ) of D is given by:

ψ(G; γ) = |γI −D(G)| =

c1 c2 c3 c4 . . . cp . . . cn

R1

R2

R3

R4
...
Rp
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ −1 −1 −1 . . . −1 . . . −1
−1 γ −1 −2 . . . −1 . . . −a2

−1 −1 γ −1 . . . −1 . . . −a3

−1 −2 −1 γ . . . −1 . . . −a2
...
−1 −1 −1 −1 . . . γ . . . −1
...
−1 −a2 −a3 −a2 . . . −1 . . . γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Replacing Rp by Rp−R1, we see that (γ+1) is a factor of ψ(G; γ). As
this is true for every p ∈ P, we see that (γ + 1)|P | is a factor of ψ(G; γ).
This completes the proof. �

Theorem 3.3. If G is an SQG, then −2 is an eigenvalue of G with
multiplicity greater than or equal to k where,

k =
∑

p prime
p≤[n

2
]

[ logp n ].

Proof. If p is any prime less than or equal to [n2 ], then the distance
between the vertices p and pc (c = 2, 3, . . . , [ logp n ]) is 2. Note that
if j 6= p and j 6= pc, then the distance between p and j is the same as
the distance between pc and j. Let [dij ] be the (i, j)−th entry of the
distance matrix D of G. Then,

dij =


1 if (i, j) = 1,
2 if (i, j) 6= 1,
0 if i = j.
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Thus, the distance matrix of SQG is:

c1 c2 c3 . . . cp . . . cpc . . . cn

D(G) =

R1

R2

R3
...
Rp
...
Rpc

...
Rn



0 1 1 . . . 1 . . . 1 . . . 1
1 0 1 . . . 1 . . . 1 . . . a2

1 1 0 . . . 1 . . . 1 . . . a3
...
1 1 1 . . . 0 . . . 2 . . . ap
...
1 1 1 . . . 2 . . . 0 . . . ap
...
1 a2 a3 . . . ap . . . ap . . . 0


where,

a2 =

{
2 if n ≡ 0 (mod 2),
1 otherwise,

a3 =

{
2 if n ≡ 0 (mod 3),
1 otherwise,

ap =

{
2 if n ≡ 0 (mod p),
1 otherwise,

and so on.
If c = [ logp n ], then using the same argument as above, we see that
(γ + 2)[logpn] is a factor of ψ(G; γ). If we apply this method for every
prime p, 1 < p < [n

2 ], we get the required result. �

Theorem 3.4. Let G be an SQG with n (n > 3) vertices and maximum
edges m. Let P = { p | p is prime and n

2 < p ≤ n } and l =| P | .
Then,

ED(G) ≤ l + 2k +
√

(n− l − k)
(
2

∑
1≤i≤j≤n

d(vi, vj)2 − l − 4k
)
,
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where,
k =

∑
p prime
p≤[n

2
]

[ logp n ].

Proof. If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, the Cauchy-
Schwarz inequality states that( n∑

i=1

aibi
)2 ≤

( n∑
i=1

a2
i

)( n∑
i=1

b2i
)
. (3.2)

Setting ai = 1, bi = |γi| and replacing n by n− l− k, in (3.2), we obtain( n−l−k∑
i=1

|γi|
)2 ≤ (n− l − k)

( n−l−k∑
i=1

|γi|2
)
. (3.3)

By Theorems 3.2 and 3.3, we have that -1 and -2 are eigenvalues of G
with multiplicity greater than or equal to l and k, respectively. Hence,

ED(G) =
n∑

i=1

|γi| =
n−l−k∑

i=1

|γi|+ k| − 2|+ l| − 1|,

E(G)− l − 2k =
n−l−k∑

i=1

|γi|. (3.4)

From (3.1), we have that

2
∑

1≤i≤j≤n

d(vi, vj)2 =
n−l−k∑

i=1

γ2
i + k(−2)2 + l(−1)2,

i.e.,
n−l−k∑

i=1

γ2
i = 2

∑
1≤i≤j≤n

d(vi, vj)2 − l − 4k. (3.5)

Employing (3.4) and (3.5) in (3.3), we deduce that

(ED(G)− l − 2k)2 ≤ (n− l − k)(2
∑

1≤i≤j≤n

d(vi, vj)2 − l − 4k),

or equivalently,

ED(G) ≤ l + 2k +
√

(n− l − k)(2
∑

1≤i≤j≤n

d(vi, vj)2 − l − 4k).
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