
Bulletin of the Iranian Mathematical Society Vol. 38 No. 3 (2012), pp 715-724.

APPLYING BUCHBERGER’S CRITERIA ON

MONTES’S DISPGB ALGORITHM

A. HASHEMI∗ AND M. DEHGHANI DARMIAN AND B. M.-ALIZADEH

Communicated by Teo Mora

Abstract. The concepts of comprehensive Gröbner bases and
Gröbner systems were introduced by Weispfenning in [13]. Montes
in [9] has proposed DisPGB algorithm for computing Gröbner sys-
tems. But he has not explicitly used Buchberger’s criteria in his
algorithm. In this paper, we show how to apply these criteria on
Montes algorithm, and we propose an improved version of DisPGB.

Introduction

The theory of Gröbner bases is a key computational tool to study
polynomial ideals. This theory was introduced and developed by Buch-
berger in 1965 (see his PhD thesis [1]). His two criteria (to detect the
redundant critical pairs) and the implementation methods (see [2]) made
the Gröbner bases a powerful tool to solve many important problems in
polynomial ideal theory. In 1988, Gebauer and Möller have installed
Buchberger’s two criteria on Buchberger’s algorithm in an efficient way
(see [4] or [3] page 230). The concept of comprehensive Gröbner bases
can be considered as an extension of Gröbner bases of polynomials over
fields to polynomials with parametric coefficients. This extension plays
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an important role in the applications such as constructive algebraic ge-
ometry, robotics, electrical network, automatic theorem proving and so
on (see [6, 7, 9, 11] for example). Comprehensive Gröbner bases and its
equivalent; Gröbner systems were introduced by Weispfenning in [13].
He has proved that any parametric polynomial ideal has a comprehensive
Gröbner basis and has described an algorithm to compute them. Montes
in [9] has then proposed a more efficient algorithm (DisPGB) for com-
puting Gröbner systems. Weispfenning in [14] has proved the existence
of a canonical comprehensive Gröbner basis. In 2003, Sato and Suzuki in
[12] have introduced the concept of alternative comprehensive Gröbner
basis. Manubens and Montes in [6], using discriminant ideal, have im-
proved DisPGB algorithm and in [7] have introduced an algorithm for
computing minimal canonical comprehensive Gröbner system. Recently,
Montes and Wibmer in [10] has presented GröbnerCover algorithm
which gives a finite partition of the parameter space into locally closed
subsets together with polynomial data, from which the reduced Gröbner
basis for a given parameter point can immediately be determined.

Montes in his DisPGB algorithm has not explicitly used Buchberger’s
criteria (see also [8]). In this paper, we improve DisPGB algorithm by a
non trivial use of Buchberger’s two criteria. Also, we show explicitly how
to use the computations already done in DisPGB (see [8]). Finally, we
propose a new strategy for the selection of polynomials in this algorithm.

Now, we give the structure of the paper. Section 1 contains the
basic definitions and notations. In Section 2, we describe Improved
DisPGB; to apply Buchberger’s criteria to Montes algorithm and for
other improvements of this algorithm.

1. Preliminaries

In the section, we recall the basic definitions and notations needed
in the paper. We first give Buchberger’s criteria and then we recall the
definitions of comprehensive Gröbner bases and Gröbner systems.

Let R = K[x] be a polynomial ring where x = x1, . . . , xn is a sequence
of variables and K is an arbitrary field. Let I = 〈f1, . . . , fk〉 be the ideal
of R generated by the polynomials f1, . . . , fk. Also let f ∈ R and ≺ be
a monomial ordering on R. The leading monomial of f is the greatest
monomial (w.r.t. ≺) appeared in f , and we denote it by LM(f). The
leading coefficient of f , written LC(f), is the coefficient of LM(f). The
leading term of f is LT(f) = LC(f)LM(f). The leading term ideal of I
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is defined to be

LT(I) = 〈LT(f) | f ∈ I〉.
A finite subset G = {g1, . . . , gk} ⊂ I is called a Gröbner basis of I w.r.t.
≺ if LT(I) = 〈LT(g1), . . . ,LT(gk)〉. Buchberger in 1965 has introduced
an algorithm to compute Gröbner bases (see [3], pages 213–214). He has
proposed the following two criteria to improve his algorithm (see [2]).
Below, we denote by gG≺ a remainder of the division of a polynomial g
by a set G w.r.t ≺.

Lemma 1.1. (Buchberger’s first criterion) Let f, g ∈ R be two polyno-

mials such that gcd(LM(f),LM(g)) = 1. Then Spol(f, g)
{f,g}
≺ = 0.

Proof 1.2. See [3], Lemma 5.66.

Definition 1.3. Let 0 6= f ∈ R, F ⊂ R be a finite set of polynomials

and t ∈ R be a monomial. A representation f =
∑k

i=1mifi where mi

are terms and fi ∈ F (not necessarily pairwise disjoint) is called a t-
representation of f if LM(mifi) � t for all i. If t = LM(f), such a
representation is called a standard representation.

Proposition 1.4. (Buchberger’s second criterion) Let F ⊂ R be a finite
set of polynomials and p1, p2, p ∈ R such that

• LM(p) | lcm(LM(p1),LM(p2))
• Spol(pi, p) has a ti-representation for ti ≺ lcm(LM(pi),LM(p))

where i = 1, 2

then Spol(p1, p2) has a t-representation for t ≺ lcm(LM(p1),LM(p2)).

Proof 1.5. See [3], Proposition 5.70.

Gebauer and Möller in [4] have installed Buchberger’s two criteria on
Buchberger’s algorithm. Weispfenning and Becker in [3], page 230, have
described Update algorithm which is a variant of Gebauer and Möller
algorithm.

Now consider F = {f1, . . . , fk} ⊂ S = K[a, x] where a = a1, . . . , am
is a sequence of parameters. Let ≺x (resp. ≺a) be a monomial ordering
involving the xi’s (respectively ai’s). We also need a compatible elimi-
nation product ordering ≺x,a. It is defined as follows: For all α, γ ∈ Zn≥0
and β, δ ∈ Zm≥0

xγaδ ≺x,a xαaβ iff

{
xγ ≺x xα or
xγ = xα and aδ ≺a aβ.
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A finite set G ⊂ S is called a comprehensive Gröbner basis for 〈F 〉
w.r.t. ≺x,a if for all homomorphism σ : K[a] → K ′, σ(G) is a Gröbner
basis for 〈σ(F )〉 w.r.t. ≺x where K ′ ⊇ K is a field extension of K. The
above homomorphism σ is called a specialization of S. Now, we recall
the definition of a Gröbner system for a parametric ideal.

Definition 1.6. A triple set {(Gi, Ni,Wi)}`i=1 is called a Gröbner sys-
tem for 〈F 〉 w.r.t ≺x,a if

• σ(Gi) is a Gröbner basis for σ(〈F 〉) w.r.t. ≺x
• σ(p) = 0 for each p ∈ Ni ⊂ K[a]
• σ(q) 6= 0 for each q ∈Wi ⊂ K[a]

for any homomorphism σ : K[a]→ K ′, where K ′ is a field extension of
K.

Remark that DisPGB computes a Gröbner system for a parametric
ideal, and from such a system one can compute a comprehensive Gröbner
basis for the ideal (for more details we refer to [13, 9]). The set Ni

(respectively Wi) is called the (respectively non) null conditions set.
The pair (Ni,Wi) is called the actual specification of a homomorphism σ
(and we write σ ∈

∑
(Ni,Wi) for simplification) if the second and third

items of the above definition are satisfied.

2. Improved DisPGB algorithm

Montes in [9] has proposed an efficient algorithm (DisPGB) for com-
puting Gröbner systems. But, he has not explicitly used Buchberger’s
criteria in his algorithm, and he has only indicated the use of these crite-
ria (see also [8]). In this section, we prove that we can use Buchberger’s
criteria for computing Gröbner systems. Also, we show explicitly how
to use the computations already done in DisPGB to speed up the new
algorithm (see [8]).

To describe DisPGB, Montes has used five subalgorithms Canspec,
Newcond, CondPGB, Branch and Newvertex. In the following,
we explain how to improve (some of) these algorithms to apply Buch-
berger’s criteria (see CondPGB) and to use the computations already
done in DisPGB. The Maple code of our algorithms are available at
http://amirhashemi.iut.ac.ir/software.html.

Note that the algorithms that we do not improve here are the same
as in [9]. Below we use the notations of the previous section. We use
Improved Newvertex function which is similar to Newvertex. The
only difference between them is that the former gets a set of critical
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pairs and at the end, transfers it to Improved Branch without any
change.

It is worth noting that the correctness and termination of our new
algorithms are followed by Theorem 2.1, [3], Theorem 5.73 and [9], The-
orem 16.

To modify DisPGB algorithm, we propose first the OrderedSet
algorithm. In DisPGB, the polynomials are chosen by the order of the
input. Then, each polynomial can refine the data at the corresponding
vertex by Newcond algorithm, and therefore the bad choice of poly-
nomials may lead to different outputs and timing. Thus, we propose
a selection strategy in the following and we then use it in DisPGB
algorithm.

Algorithm 1 OrderedSet

Require: B; set of polynomials in S
Ensure: B′; ordered version of B
B′:= The ordered set of B w.r.t. ≺a, increasingly and according to
the leading coefficient of the elements of B w.r.t. ≺x
Return(B′)

Algorithm 2 Improved DISPGB

Require: F ⊂ S
Ensure: A Gröbner system for 〈F 〉

List:={ } (a global variable)
flag:=false (a global variable)
B:=InterReduce(F,≺x,a)
G :=OrderedSet(B)
Improved Branch([ ], G, [ ], [ ], { })
Return(List);

The InterReduce function is a Maple function which inter-reduces
a list of polynomials w.r.t. the given monomial ordering. For example,
let F = {x2 + xy− 2, x2− xy}. Then InterReduce(F,≺) returns {xy−
1, x2 − 1} where ≺ is the lexicographical ordering with y ≺ x.
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Algorithm 3 Improved Branch

Require: v; label of the vertex, B; specializing basis at the vertex v,
N ; set of null conditions, W ; set of non-null conditions and J ; set of
critical pairs

Ensure: It stores the refined (B′, N ′,W ′, J ′) at the vertex v, and create
two new vertices when necessary or make the vertex as terminal
if flag then

B := [f
N
≺a
| ∀f ∈ B]

f := B[−1] (the last element of B)
(cd, f ′, N ′,W ′) =Newcond(f,N,W )
if f ′ = 0 then

remove f ′ from B and the critical pairs containing f ′ from J
else
B[−1] := f ′

end if
if cd 6= ∅ then

pivot:= |B|
end if

else
for i from 1 to |B| while cd = ∅ do
f := B[i]
(cd, f ′, N ′,W ′) :=Newcond(f,N,W )
if f ′ = 0 then

remove f ′ from B and the critical pairs containing f ′ from J
else
B[i] := f ′

end if
if cd 6= ∅ then

pivot:= i
end if

end for
end if
T [v] := (−, B,N ′,W ′)(cond is already stored in T (v). Refinement of
data)
if cd = ∅ then

(test, B′, N ′,W ′, J ′) :=CondPGB(B,N ′,W ′, J)
if test then
T [v] := (−, B′, N ′,W ′, terminal vertex)
List:=List ∪ {T [v]}

else
Improved Branch(v,B′, N ′,W ′, J ′)(further refinement is
needed)

end if
else
Improved Newvertex(1, v, cd,B′, N ′,W ′, J ′, pivot)
Improved Newvertex(0, v, cd,B′, N ′,W ′, J ′, pivot)

end if
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Algorithm 4 Improved CondPGB

Require: B; specializing basis, N ; the set of null conditions, W ; the
set of non-null conditions (where σ ∈

∑
(N,W ) ) and J ; the set of

critical pairs
Ensure: test; if test = true then σ(B′) is yet the Gröbner basis, B′; the

new completed specializing basis, (N ′,W ′); the refined specification
of (N,W )
test := true
flag := true (a global variable)
N ′ := N
W ′ := W
if J = [ ] then
B′ := [ ]
J ′ := [ ]
for i from 1 to |B| do

(B′, J ′) :=Update(B[i], B′, J ′)
end for

else
(B′, J ′) :=Update(B[−1], [B[1], . . . , B[|B| − 1]], J)

end if
sort J ′ by the normal strategy
while J ′ 6= ∅ and test do

select and remove (i, j) from J ′

S := PSpol(B′[i],B′[j],≺x)
B′

≺x
;

S := S
N ′

≺x,a
;

if S 6= 0 then
(cd, S,N ′,W ′) :=Newcond(S,N ′,W ′);
if cd = ∅ then

if S 6= 0 then
(B′, J ′) :=Update(S,B′, J ′)

end if
else

test:=false
B′ :=adding S at the end of B′

end if
end if

end while
if test then
B′ :=InterReduce(B′,≺x,a)

end if
Return((test,B′, N ′,W ′, J ′))
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For more details on the normal strategy and Update algorithm, we
refer to [3], page 225 and 230 respectively. In Improved CondPGB,
in order to avoid denominators and unnecessary factors in S-polynomial
for two polynomials f, g ∈ S, we use

PSpol(f, g) =
Γxγ

LT(f)
f − Γxγ

LT(g)
g

where Γ = lcm(LC(f),LC(g)) and xγ = lcm(LM(f),LM(g)).

Theorem 2.1. Improved CondPGB algorithm determines a quintu-
ple (test, B′, N ′,W ′, J ′) where if test=true, σ(B′) is the reduced Gröbner
basis of 〈σ(F )〉 for σ ∈

∑
(N ′,W ′) and if test=false, B′ is an extended

set of B and contains at least one polynomial such that the actual speci-
fication (N,W ) cannot decide if its leading coefficient specializes to zero
or not. In this case, it returns also a non-empty set J ′ of the critical
pairs remaining to study to complete the Gröbner basis process.

Proof. The proof of termination of Improved CondPGB is similar to
that of CondPGB (see [9], pages 197–198). Its correctness is deduced
also from that of CondPGB, but, we have to prove the correctness of
using Update algorithm. Indeed, we must prove that we do not delete
any undecidable parameters. Let p, p1, p2 ∈ B be three polynomials s.t.
LM≺x(p) | lcm

(
LM≺x(p1),LM≺x(p2)

)
and the pairs (p, p1) and (p, p2)

have been (will be) treated during Improved DisPGB algorithm. Ac-
cording to Improved Branch, Improved CondPGB is applied when
all the leading coefficients of the elements of B are decided. From [3],
page 224, we can write

bSpol(p1, p2) = cs1Spol(p1, p) + as2Spol(p, p2)

where a = LC≺x(p1), b = LC≺x(p), c = LC≺x(p2), s1 = lcm(LM(p1),LM(p2))
lcm(LM(p1),LM(p))

and s2 = lcm(LM(p1),LM(p2))
lcm(LM(p),LM(p2))

. From our assumption Spol(p1, p) and

Spol(p, p2) have non-zero leading coefficients w.r.t. (N,W ), and have
also standard representations. Therefore, the pair (p1, p2) has a stan-
dard representation, and we can delete it by Update algorithm (see [3]
Proposition 1.3). We can prove in the same way that if a pair (p1, p2)
satisfies Buchberger’s first criterion, we can delete it. �
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