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COMPACT WEIGHTED FROBENIUS-PERRON
OPERATORS AND THEIR SPECTRA
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ABSTRACT. In this paper we characterize the compact weighted
Frobenius - Perron operator P% on L' () and determine its spectra.
Also, it is shown that every weakly compact weighted Frobenius-
Perron operator on L*(X) is compact.

1. Introduction and Preliminaries

Let (X, 3, 1) be a complete o-finite measure space and let ¢ : X — X
be a non-singular transformation, i.e. ¢ is ¥-measurable function and
(e~ t(A)) = 0forall A € X such that ju(A) = 0. This assumption about
¢ just says that the measure pop ™! is absolutely continuous with respect
to the measure p (we write o @™t < p, as usual), where po @~ (A) =
pu(p~t(A)) for A € . We shall assume that the restriction of u to
o-subalgebra ¢~ 1(2) of ¥, is o-finite, and we denote by (X, (), p)
the completion of (X, @_1(2),/,6‘89—1(2)). We denote by h the Radon-
Nikodym derivative h = dp o o~ !/du. We will write L'(p=1(X)) for
LYX, p~1(D), Ho-1(2))- L'(¢~%(%)) may then be viewed as a subspace
of L'(¥) and denote its norm by |.||;. Support of a measurable function
f will be denoted by supp(f) = {z € X; f(z) # 0}. Relationships
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between functions f and between sets are interpreted in the almost every
where sense. For any non-negative Y-measurable functions f as well as
for any f € LP(X), by the Radon-Nikodym theorem, there exists a
unique ¢~ (X)-measurable function E(f) such that

/Efd,u: / fdp,  forall Ae o 1(D).
A A

Hence we obtain an operator E from L'(X) onto L'(¢~!(X)) which
is called conditional expectation operator associated with the o-algebra
¢ 1(). Tt is easy to show that for each f € L'(X), there exists a
Y-measurable function g such that E(f) = g o ¢. To obtain a unique
g with this property we may assume and do that supp(g) C supp(h).
We therefore write g = FE(f) o ¢!, though we make no assumptions
regarding the invertibility of ¢ (see [9]). It is easy to check that E(f) o
!t —E(g)op ! =E(f—g)op "t and |E(f)o 7| = [E(f)| oy~ for
all f,g € L*(X). We list here some of its useful properties:

e E(fg) = E(f)g whenever g is ¢ ~!(X)-measurable and both conditional
expectations are defined.

o |E(F)IP < E(fP), for each p> 1.

o If f >0 then E(f)>0;if E(|f|) =0 then f =0.

Let f be a real-valued measurable function. Consider the set By =
{x € X : E(f")(z) = E(f)(z) = oo}. The function f is said to be
conditionable with respect to ¢~1(X), if u(By) = 0. If f is complex-
valued, then f is conditionable if the real and imaginary parts of f are
conditionable and their respective expectations are not both infinite on
the same set of positive measure. For more details on the properties of
E see [9, 10].

The aim of this paper is to carry some of the results obtained for
the weighted composition operators and (classic) Frobenius-Perron op-
erators in [4, 8, 11] to the weighted Frobenius-Perron operators. In the
paper, first we give a necessary and sufficient condition for compact-
ness of the weighted Frobenius-Perron operator P on LY(¥). Then, by
making use of this condition we determine the spectrum of the compact
operator Pg. One should note that the illustration of spectrum of the
Frobenius-Perron operators, in general case, is still an open problem
(see [3]). We also show that every weakly compact weighted Frobenius-
Perron operator on L!(X) is compact.
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2. Main Results

Suppose ¢ : X — X is a non-singular transformation and let v : X —
C be a conditionable measurable function. If A is any Y-measurable set
for which fsa‘l(A) ufdu exists, the linear operator Py : LY(Z) — LY(%)
defined by [ A Pofdp = f(p_l( A) U fdp is called a weighted Frobenius-
Perron operator associated with the pair (u, p). Note that the operator
P2 is a bounded operator on LY(X) if and only if u € L>®(X) and its
norm is given by [ Pg|| = [[ulloc (see [7]).

Take a set A € ¥ with pu(A) > 0. We say that A is an atom if, for
any C' € ¥ with C C A, we have either u(C) = 0 or u(A\C) = 0. Let
A be an atom. Since p is o-finite, it follows that u(A) < oco. Also,
every Y-measurable function f on X is constant almost everywhere on
A. As is well known that, a o-finite measure space (X, ¥, 1) is uniquely
decomposed as

(2.1) X =BU{A; :i€eN},

where B is a non-atomic set and {A;};cn is a countable collection of
disjoint atoms (see [12]).

Lemma 2.1. Let By be a non-atomic set in ¥ with 0 < p(Bp) < 00
and let p : X — X be a non-singular measurable transformation. Then
¢~ (XN By) has no atoms.

Proof. See ([6], Lemma 1). O

Theorem 2.2. Let Pj be a bounded Frobenius-Perron operator on LY(%)
and suppose (X,X, ) can be partitioned as (2.1). Then Py is a com-
pact operator on LY(X) if and only if u(p='(B)) = 0 (u(x) = 0 for
p-almost all x € ¢~ Y(B)), and for any ¢ > 0, the set {n € N :
(o~ (An) N D.(u)) > 0} is finite, where D.(u) = {x € X : |u(z)| > €}.

Proof. Suppose that P7 is a compact operator. First we show that
u(¢~1(B)) = 0. Suppose the contrary. Since D.(u) C D.(E(|u|)) :=
{x € X : E(Ju|)(z) > ¢}, then there exists § > 0 such that u(p~1(B) N
Ds(E(|ul))) > u(¢=1(B) N Ds(u)) > 0. Since ¢~ 1(X) is a o-finite, there
isa Bp € XN B with 0 < u(e~1(By) N Ds(E(|ul))) < oo. Hence Jy :=
0 1 (Bo)NDs(E(Ju])) € o1 (ENB)NT = ¢~ 1(NB). By Lemma 2.1, Jy
has no atoms. Choose a sequence {B,}2°; C ¥.N By, such that J,41 C
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Jn € Jo, 0 < p(Jns1) = u(Jn)/2, where J,, := o~ 1(B,) N Ds(E(|ul)) €
¢ (). Foralln € N, define f, = ux, /(||ullsopt(Jn)). Then || fnll1 < 1.
Now by using the change of variable formula ( [y hfdu = [y fopdpu, for
any non-negative measurable function f), for any m,n € N with m > n
we get that

1P — P2 fonlly = /X HIE(fa — fo)] oo~ du

E([ul®) | X Xom
Bt = gt = [ = i
. (E(u])?dp 5 [
~ S ulloop(In) — lulloo S\t #(Tn)
8w \Tm) 6P (1 B ,u(Jm> 52
Tl a() Tl U a2l
which shows that the sequence {Pf’f fn}nen dose not contain a convergent
subsequence. But this is a contradiction. ]

Now, we show that for any ¢ > 0, the set {n € N : p(p~1(4,) N
D.(u)) > 0} is finite. Suppose the contrary again. Then, for some
e > 0, there is a subsequence {Aj}ren of disjoint atoms in ¥ such
that (o=t (Ax) N De(E(|ul))) > 0, for all k € N. Put Gy, = ¢~ 1 (Ax) N
D.(E(|u])). Hence we obtain a sequence of pairwise disjoint sets { G } ken
such that for every k € N, Gy, € ¢~ 1(2) and u(G},) > 0. Moreover, since
¢~ 1(X) is o-finite, then h is finite valued and for each k € N, u(A) < oo.
Hence ju(Gy) < (e (Ay)) = [4, hdu = h(Ap)u(Ay) < oo. For any
k €N, take fi = tuxg, /([[ulloopt(Gr)). Then [[f[li < 1. Since for each
i#j, GiNGj =0, it follows that

E(|uf?)

x lulloo

Xci XG-

J

w(Gi)  u(Gy)
o EleP)xe, (E(uP)xe,
-/, (umwai)) int [, (nunmu(@-)) d“

(B(u))*xe, (B(u)*xe, 22
A ( Felloon(Go) ) i |, ( Tull<n(G)) ) Wl

This contradicts the compactness of Py.

[Pofi = Pyfillh = dp

The proof of the sufficient part is the same as for Theorem 2.9 in [7].
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Corollary 2.3. Suppose that p is nonatomic, i.e. X = B. Then a
weighted Frobenius-Perron operator on L'(X) is compact if and only if
it is a zero operator. In particular, no classic Frobenius-Perron operator
on LY(X) is compact.

Our next task is about the spectra. For the classic Frobenius-Perron
operator P, on L'(¥), some basic properties of its spectra were described
by Jiu Ding [2, 3, 4, 5] and some other mathematicians. In this sequel,
we determine the spectrum, U(Pf;), of a compact weighted Frobenius-
Perron operator P on LY(%).

The kth iterate ©* of the non-singular measurable transformation
¢ : X — X is defined by ¢°(z) = z and ¢*(z) = (¢ (z)) for
all r € X and k¥ € N. From now on, we assume that the sequence
hy = % is uniformly bounded.

Definition 2.4. An atom A is called an invariant atom with respect to
@, if for alln € Z, ¢"(A) is an atom. An invariant atom A with respect
to @ is called a fixred atom of ¢ of order one, if u(A) 7& 0 and p(A) =
A= Y(A). Also, it is called of order2 < k € N, if [[*, o u(pH(A)) #0,
0 R(A) = A= F(A) and o' (A) # A fori=+1,...,+(k—1).

Theorem 2.5. Let Py be a compact weighted Frobenius-Perron operator
Py on LY(2). If we set

A={ eC: e = H u(p , for some fized atom A of v of order k},

then we have o(Pg) U {0} = AU {0}.

Proof. To prove the theorem, we adopt the method used by Kamowitz
[8] and Takagi [11]. Let A be an invariant atom and u(¢™(A)) = 0 for
some m € N. We claim that Pg is not onto. If is not, then there exists

f € LY(2) such that Py f = Xpm+1(4)- This implies that

0= / ufdu = / Pofdu = p(e™(4)) > 0,
m(A) (Pm+1(A)

which is a contradiction. Thus in this case 0 € o(Py). Now, let A be
a fixed atom of ¢ of order one and suppose A = u(A). We claim that
the equation A\f —Pgf = xa is not solvable for a non-zero f € LY(%).



822 Jabbarzadeh and Emamalipour

Indeed, since p~1(A) = A, we have

(PL1)(4) / P"fd“_@ / Ly

1 /
=—— | ufdu=u(A)f(A) = (Af)(A).
o [ ufdn=ut ) = 0
Hence, we get that (Af — P2f)(A) = 0 while xya(A4) = 1. Therefore
A € o(P3). Now, suppose that A is a fixed atom of ¢ of order k > 2
and A = [k 5 u(¢'(A)). By induction, we can easily show that
k—1
(2:2)  AF(A) = (POFUNA) = NTH M1 (PR) (xa)) (A).-
i=1
Put Uy = Hf " (uog'). Then (Pu)% = P My, , where My, is a mul-
tiplication operator (see [7]). Since ¢ %(A) = A and p~i(A) # A for
i==1,...+ (k—1), then we have

(PLF(1))(A) = (1A) /A (P (f)dp = M(lA) /A P (Us f)dp

1
/_k(A) Urfdu = MAkadM = Uk(A)f(A)

and

N M(1A>U@'(%O_i(A)>XA<so‘i(A)>u(<p"’<A>> —0.

It follows that, the left hand side of (2.2) equals 0, while the right hand
side of (2.2) equals A*~!. This contradiction shows that \ € a(Pgy).
Therefore AU {0} C o(Pg) U {0}.

Now, we show the opposite inclusion. Let A ¢ A U {0}, and suppose
that P2f = Af, for some f € LY(¥). Since every non-zero spectral
value A of P7 is an eigenvalue of PZ, we must show that f is zero u-
almost everywhere on X.We first show that f(A) = 0 for every invariant
atom A. Let A be a fixed atom of ¢ of order k. Since Pgf = Af, by
induction, we get (P xUy)f = Moo and so Up(A)f(A) = \Ff(A). Since
Up(A) # N\, we have f(A) =

By the first part of the proof, we can assume that for all k € NU {0},
u(F(A)) # 0. Put K(A) = {¢'(A4) : i € NU{0}}. If K(A) is finite,
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then for some m,n € NU {0} with m > n, ¢™(A) = ¢"(A). It fol-
lows that ™" (¢™™(A)) = ¢ "(A) = ¢ ™(A) and """ (p7"(4)) =
"M (@M M (7™ (A)) = ¢ ™(A). Thus ¢ " (A) is a fixed atom of ¢
of order m — n and hence f(p~"(A)) = 0. On the other hand, since
A f = (Pg)™f and

(PE)™(fN(A) = ——5Um(e™ ™ (A)f (™ (A)u(p™"(4)) = 0,

then, f(A) =0.

Now, suppose that IC(A) is infinite. We claim that the set {n €
Z : |u(e™(A)| > €} is finite for some £ > 0. Suppose this dose not
hold. Then the set {n € Z : u({z € ¢~ (" H(A)) : |u(z)| > ¢}) >
0} is infinite. But this contradicts the compactness of Pg. Put N =
max{|m| € N : |u(¢™(A))| > €}. Choose ¢ = |A|/2. Then, for each
n >N, [u(¢™(A4))| < [A|/2. It follows that

IN'F(A)] = halu(e™"(A)) ... u(p™(A) . ule™ (A) F(™"(4)]
Al

< hnllull% ( 5 )" NI £l
Thus
N |>\’ —N 1 n
[FA] < allulle (7)) Il — 0, as n — 00.

Therefore we conclude that f is zero on U,enAn,-

It remains to show that f is zero p-almost everywhere on B. Since
LY(X) = LY(UpenAy) ® LY(B), hence it suffices to show that f is zero
as an element of L'(B). Now, it follows from u(¢~!(B)) = 0 that

PLfl o —/ P“fdu—/ ufdpu = 0.

H %) HL (B) B’ %) ‘ o1(B)

Thus A\f = PZf = 0 and hence [ is zero p-almost everywhere on B.
This completes the proof of the theorem. O

Finally, we investigate the weakly compact weighted Frobenius-Perron
operators on L'(¥). Recall that the operator Py LY(X) — LY(D) is
said to be weakly compact if it maps bounded subsets of L(X) into
weakly sequentially compact subsets of L!(X). A classical theorem of
Dunford (see [1], IV.8.9) isolates the weakly sequentially compact sub-
sets of L'(¥) as the bounded uniformly integrable subsets. We begin
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with the following lemma, which can be deduced from Theorem IV.8.9,
and its Corollaries 8.10, 8.11 in [1].

Lemma 2.6. Let H be a weakly sequentially compact set in L*(X). Then
for each decreasing sequence {E,} in ¥ such that lim, o p(Ey) = 0 or
N2, E, = 0, the sequence of integrals {fEn |h|du} converges to zero
uniformly for h in H.

Theorem 2.7. Let Py be a bounded Frobenius-Perron operator on LY(%)
and suppose that (X,X, u) can be partitioned as (2.1). Then Py is a
weakly compact operator on L'(X) if and only if it is compact.

Proof. It suffices to show the “ only if ” part. The inspiration for the
proof is the method used by Takagi [11]. Let P, be a weakly compact
operator on L'(X). We first show that u(¢~!(B)) = 0. Suppose the
contrary. By the same argument as in the proof of Theorem 2.2, we
assume that for some § > 0 and By C B, 0 < u(¢~1(Bg) N Ds(u)) < oo.
Now, as By is non-atomic, we can find a decreasing sequence {B,} C
BoNY with 0 < p4(Bp) < £ and 0 < J,, := u(¢ 1 (Bn)NDs(u)) < co. Let
U be the closed unit ball of L!(X). Since PU is weakly sequentially
compact, Lemma 2.6 can be applied with H = PZU and E, = B,.
Choose € = 6%/||ul|oo- Then there exists an n, € N such that

2
(23) [P <

o

feU.

ulloo”

On the other hand if we take f,, = @x.,, /(||t|lcopt(Jn,)), we have

" UwX J, 1
|Pufldu = / hE <"> o du
/Bn v By [[ullsot(Jn,)

o

lul*xs ) 1 / 2
= B = ) dp = |ul*X.1,., dps
/gol(Bno) <||UHooM(Jno) wlloott(Jny) Jom1(Ba,)

1 / 5 52
= lul“dp > ——.
[ulloopt(In,) J i, [/l oo

Since f,, € U, this contradicts (2.3). According to Theorem 2.2, it
remains to show that for any € > 0, the set A := {n € N: u(p=(4,) N
D.(u)) > 0} is finite. To end this, without loss of generality, we can
assume that A = N for some ¢ > 0. Put K,, = {4; : £ > n} and
Gn = ¢ 1(K;) N Do(u). Then we have N2, K,, = 0 and u(G,) > 0 for
each n € N. Also, since h is essentially bounded, there is a constant
M > 0 such that p(Gy) < u(p™ 1 (K,)) < Mu(K,) — 0, as n — oo. So
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we can assume that p(G,) < oo for each n € N. Applying Lemma 2.6
once more, there exists an N € N such that

52

/ P fldp < . fevU.
K [[ulloo

Now, for any n with n > N, let g, = uxq,, /(||¢]|copt(Gr)). Then we have

ul*xa
[Py gnldp Z/ E (" dp
/KN v 1K) \ullocp(Gr)
1 / 9 g2
N T ey
[ulloori(Gr) Ja,, [[ulloo

Since g, € U, this contradicts (2.3). This completes the proof of the
theorem. O
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