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Abstract. We present an effective algorithm for minimization of
locally nonconvex Lipschitz functions based on mollifier functions
approximating the Clarke generalized gradient. To this aim, first
we approximate the Clarke generalized gradient by mollifier subgra-
dients. To construct this approximation, we use a set of averaged
functions gradients. Then, we show that the convex hull of this set
serves as a good approximation for the Clarke generalized gradient.
Using this approximation of the Clarke generalized gradient, we
establish an algorithm for minimization of locally Lipschitz func-
tions. Based on mollifier subgradient approximation, we propose
a dynamic algorithm for finding a direction satisfying the Armijo
condition without needing many subgradient evaluations. We prove
that the search direction procedure terminates after finitely many
iterations and show how to reduce the objective function value in
the obtained search direction. We also prove that the first order op-
timality conditions are satisfied for any accumulation point of the
sequence constructed by the algorithm. Finally, we implement our
algorithm with MATLAB codes and approximate averaged func-
tions gradients by the Monte-Carlo method. The numerical results
show that our algorithm is effectively more efficient and also more
robust than the GS algorithm, currently perceived to be a compet-
itive algorithm for minimization of nonconvex Lipschitz functions.
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1. Introduction

Some nonsmooth optimization algorithms find the search direction
using the Clarke generalized gradient. Most of these algorithms can
be efficient only for certain types of functions; see [2, 9, 12, 13] for ex-
amples. Some modifications of these algorithms have been applied to
nonconvex and general types of locally Lipschitz functions [12, 16, 18],
but the search directions obtained are not usually sharp enough. The
method for finding a search direction is the main difference among these
algorithms. We can classify these algorithms in two main classes. The
first class uses a single element of the Clarke generalized gradient or a
modification of it as the search direction [18]. The algorithms in this
class are simple, but their search directions are not very sharp and at
times are not even a descent direction. Thus, these algorithms con-
verge very slowly. The second class chooses a minimal element of an
approximation of the Clarke generalized gradient as the search direction
[2, 9, 12, 3, 16]. The approximation is the convex hull of some subd-
ifferentials in a neighborhood of the current estimate of the solution.
This search direction is often sharper than the search direction in the
first class, but computing the direction is very time consuming. Hence,
the algorithms in the second class can not usually be applied to high
dimensional problems effectively.

Nonsmooth minimization algorithms using the Clarke generalized gra-
dient for finding a search direction has a common drawback of needing
an explicit formula for derivative [5] or at least one element of the Clarke
generalized gradient [9, 12, 13], so that, with the absence of this require-
ment, they can not be applied to general types of functions. Thus, an
efficient nonsmooth algorithm should have two important properties:

• An efficient method for approximating the Clarke generalized
gradient of an arbitrary function with an acceptable error.

• An algorithm for finding a sharp enough descent direction with-
out the need to compute too many subdifferentials.

A simple and practical method for approximating the Clarke generalized
gradient makes use of the convex hull of some elements of the Clarke
generalized gradient or of their approximations. To improve upon this
type of the Clarke generalized gradient approximation, the elements of
the Clarke generalized gradient should be selected such that their convex
hull covers as much space of the Clarke generalized gradient as possible.
Here, to achieve this improvement, we use the mollifier subgradients.
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Mollifier subderivative is a set of the upper limits of averaged func-
tions gradient [8]. By convolution of the function f with a smooth class
of mollifier functions, {φν}, ν ∈ (0, 1), a new class of smooth functions,
fν , named averaged functions, is created [8, 19]. If f is locally Lipschitz,
then the mollifier subderivative is a subset of the Clarke generalized gra-
dient and its convex hull equals the Clarke generalized gradient. Usually,
the convex hull of some elements of mollifier subderivative covers more
space of the Clarke generalized gradient (set) than the convex hull of
same number of the Clarke generalized gradient elements selected ran-
domly. To approximate the Clarke generalized gradient, we use the
mollifier subgradients. For this, we construct a set of averaged functions
gradient and then show that for the locally Lipschitz case, the convex
hull of this approximation is an approximation of the Clarke general-
ized gradient. In numerical experiments, we use y as a perturbation
of the current estimate x and approximate ∇fν(y) by the Monte-Carlo
method, in place of ∇fν(x) for small enough ν ∈ (0, 1). By selecting
an appropriate size of the Monte-Carlo method and a close perturba-
tion of x and a small enough ν, we can find an approximation with an
acceptable error.

For an efficient computation of the search direction, instead of approx-
imating the complete Clarke generalized gradient, we give a dynamic
algorithm for computing the search direction. In this algorithm, at each
iteration we approximate one element of the mollifier subgradient and
improve upon the approximation. Then, based on this approximation
of mollifier subgradient (the minimum norm of the approximation), a
search direction is constructed. If this search direction reduces the ob-
jective function sufficiently, then the descent direction is decided by the
algorithm. Otherwise, in this direction, we perturb x and compute an-
other approximation of mollifier subgradient element. We show that for
locally Lipschitz functions this algorithm finds a descent direction after
finitely many iterations. The numerical experiments show that we com-
pute sharp descent directions while not needing to compute too many
subgradients. We find a sharp descent direction by setting a sharp con-
dition for the objective function reduction. Finally, using this descent
direction, a minimization algorithm for locally Lipschitz functions is
constructed.

We apply our algorithm to the test functions in [5], and compare
our results with the ones obtained by the GS algorithm in [5]. The
GS algorithm uses sampling gradient method [3] for approximating the
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Clarke generalized gradient. If n is the size of the problem, then in the
GS algorithm, first the the Clarke generalized gradient is approximated
by 2n sampling gradients and then the search direction is determined.
Some test functions are locally nonconvex Lipschitz and others are not.
The results show that our algorithm finds a minimizer in significantly
smaller number of iterations and smaller averaged number of computed
subdifferentials than the ones required by the GS algorithm.

Therefore, our proposed algorithm has two main merits as compared
to other nonsmooth optimization algorithms, since

• we approximate the averaged functions gradient by the Monte-
Carlo method, showing that the convex hull of the approximation
is a good approximation of the Clarke generalized gradient, and

• the dynamic algorithm finds sharp enough descent directions
without needing too many subdifferential evaluations.

In Section 2, we give a short review of mollifier function and its appli-
cation to nonsmooth analysis. In Section 3, we use the mollifier subgra-
dient to approximate the Clarke generalized gradient. First, we approx-
imate the mollifier subgradient by Monte-Carlo method and then show
that a collection of these approximations would be a good approxima-
tion for the Clarke generalized gradient. In Section 4, we use the ap-
proximation to establish an algorithm for finding descent directions. We
prove that this algorithm finds the decent direction after finitely many
iterations satisfying the Armijo condition. Using this decent direction,
we develop a minimization algorithm and prove that any accumulation
point of the sequence constructed by the algorithm satisfies the first
order optimality conditions. Section 5 presents the numerical results.
Conclusions are given in Section 6.

1.1. Notations. Let R be the real number line, N be the set of positive
integer numbers, and Sr(x) = {y ∈ Rn : ‖x− y‖2 ≤ r}. We make use of
co for convex hull and co for closure of convex hull throughout the paper.
We denote the Hausdorff distance between the subsets A,B ⊆ Rn by:

dH(A,B) = max
{

sup
u∈A

inf
v∈B

‖u− v‖2, sup
v∈B

inf
u∈A

‖u− v‖2

}
.
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2. Smooth Approximation

A smooth approximation of a nonsmooth function f is constructed
by convolution of the function with a smooth mollifier function. This
new function is named as averaged functions. Here, we give a short
review of mollifier functions and their applications to approximation of
nonsmooth functions. We first define the mollifier function and then
use it to define the mollifier subgradient and show its relation with the
Clarke generalized gradient [8].

2.1. Mollifier function. We first define the averaged functions.

Definition 2.1. [8] Given a locally integrable function f : Rn → R and
a family of bounded mollifier functions {ψν : Rn → R+, ν ∈ R+} that
satisfy∫

Rn

ψν(z)dz = 1, suppψν := {z ∈ Rn : ψν(z) > 0} ⊆ ρνS1(0)

with ρν ↓ 0 as ν ↓ 0,

the associated family {fν , ν ∈ R} of averaged functions is given by

fν(x) :=
∫

Rn

f(x− z)ψν(z)dz =
∫

Rn

f(z)ψν(x− z)dz.

A popular approach for constructing a family of mollifier functions
makes use of the density functions. Let ψ be a density function such that
suppψ is bounded and αν ↓ 0 as ν ↓ 0. Then, with this density function
and the sequence, the family of mollifier functions is constructed by the
following formula [8]:

ψν(z) =
ψ(z/αν)
(αν)n

.

In fact, we can express the averaged functions fν by the following con-
volution formula:

fν = f ∗ ψν .
The following theorem establishes the conditions, under which the aver-
aged functions converge to f .

Theorem 2.2. [8] Let f : Rn → R be continuous and {fν , ν ∈ R+} be
an associated family of averaged functions. Then, the averaged functions
fν converge continuously to f , that is, fν(xν) → f(x), for all xν → x. In
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fact, the averaged functions fν converge uniformly to f on every bounded
subset of Rn.

Here, we need the uniformly convergent property that the averaged
functions converge to a continuous function. Weaker convergence con-
ditions of averaged functions were established in [8].

In our numerical experiments, we construct averaged functions by a
density function, but these averaged functions are very sensitive with
respect to the density function. The numerical results show that the
Steklov (averaged) functions are more stable than other well known ones
based on density functions. The Steklov function is defined next [10, 11,
14].

Definition 2.3. Given a locally integrable function f : Rn → R, the
Steklov (averaged) functions are defined as:

fα(x) =
∫

Rn

f(x− z)ψα(z)dz, α > 0,

where,

ψα(z) =

{
1
αn if max

i=1,...,m
|zi| ≤ α

2 ,

0 otherwise.

Equivalently,

fα(x) =
1
αn

∫ x1+α
2

x1−α
2

dy1 . . .

∫ xn+α
2

xn−α
2

dynf(y).

As stated before, for approximating the Clarke generalized gradient,
we need to compute the gradient of averaged functions. Using the next
theorem, we can compute the gradient of averaged functions.

Theorem 2.4. [17, 19] Let f : Rn → R be locally integrable. If the
mollifier ψθ is smooth (of class C1), then the gradient of the associated
averaged functions fθ is:

∇fθ(x) =
∫

Rn

f(y)∇ψθ(x− y)dy.

The following theorem gives a special formula for the gradients of the
Steklov functions.
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Theorem 2.5. [10] Let f : Rn → R be continuous. Then, the Steklov
function fα is continuously differentiable, and its gradient is given by

∇fα(x)

=
n∑
i=1

ei
1

αn−1∫ x1+α/2

x1−α/2
dy1 . . .

∫ xi−1+α/2

xi−1−α/2
dyi−1

∫ xi+1+α/2

xi+1−α/2
dyi+1 . . .

∫ xn+α/2

xn−α/2
dyn

=
1
α

[
f(y1, . . . , yi−1, xi +

1
2
α, yi+1, . . . , yn)−

f(y1, . . . , yi−1, xi −
1
2
α, yi+1, . . . , yn)

]
,

where, ei is the ith unit coordinate vector. This gradient can also be
expressed as:
(2.1)

∇fα(x) =
n∑
i=1

ei

∫ 1
2

− 1
2

dξ1 . . .

∫ 1
2

− 1
2

dξi−1

∫ 1
2

− 1
2

dξi+1 . . .

∫ 1
2

− 1
2

dξnλ
i
α(x, ξ),

where,
(2.2)
λiα(x, ξ) =
1
α

[
f(x1 + αξ1, . . . , xi−1 + αξi−1, xi + 1

2α, xi+1 + αξi+1, . . . , xn + αξn)
−f(x1 + αξ1, . . . , xi−1 + αξi−1, xi − 1

2α, xi+1 + αξi+1, . . . , xn + αξn)
]
.

2.2. Mollifier subgradient. Here, we give the the definition of molli-
fier subgradient and its relationship to the Clarke generalized gradient
[8].

Definition 2.6. [8] Let f : Rn → R be locally integrable and let

{fν := fθν , ν ∈ N}

be a sequence of averaged functions obtained from f by convolution with
the sequence of mollifiers {ψν := ψθν : Rn → R+, ν ∈ N}, where, θν ↓ 0
as ν → ∞. Assume that the mollifiers are such that the averaged func-
tions fν are smooth (of class C1), as would be the case if the mollifiers
ψν are smooth. The subgradient set of Ψ-mollifier of f at x is:

∂ψf(x) := lim sup
ν→∞

{∇fν(xν)|xν → x} ,
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that is, the cluster points of all possible sequences {∇fν(xν)} such that
xν → x. The full Ψ-subgradient set is:

∂Ψf(x) :=
⋃
ψ

∂ψf(x),

where, ψ ranges over all possible sequences of mollifiers that generate
smooth averaged functions.

The following theorem establishes the relationship between mollifier
subgradient and the Clarke generalized gradient.

Theorem 2.7. [8] If f : Rn → R is lower semicontinuous and locally
integrable, then

co ∂ψf(x) ⊆ ∂Ψf(x) ⊆ ∂f(x),
where, ∂f(x) is the Clarke generalized gradient. If, in addition, f is
locally Lipschitz, then

co ∂ψf(x) = ∂Ψf(x) = ∂f(x).

Some nonsmooth optimization algorithms were constructed based on
a mollifier subgradient approximation [8, 10, 11]. Our approach here, to
be explained next, is to consider a convex hull of a number of mollifer
subgradient approximations.

3. Approximation of the Clarke Generalized Gradient by
Mollifier Subgradients

Here, we present a new approximation of the Clarke generalized gra-
dient based on mollifier subgradient. We prove this approximation to be
both outer and inner approximation for the Clarke generalized gradient.
Finally, we show this approximation to be upper semicontinuous.

Suppose the averaged functions, fν , to be the convolution of f with a
smooth family of mollifier functions. In numerical experiments, we use
the Steklov functions. Now, we define the following set,

W (x, ν0, λ0) = {∇fν(x+ λg) : ν ∈ (0, ν0], λ ∈ (0, λ0], g ∈ S1(0)} .
We show that, for some ν, λ ∈ (0, 1), co W (x, ν, λ) is a good approxi-

mation for the Clarke generalized gradient. Now, consider the following
set,

W (x) =
⋂
ν≥0
λ≥0

co W (x, ν, λ).
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Theorem 3.1. If f : Rn → R is a locally Lipschitz function around x,
then,

∂f(x) = W (x).

Proof. This is easily proved using Theorem 2.7. �

By the following propositions, we show that, co W (x, ν, λ) can be a
good approximation for the Clarke generalized gradient.

Proposition 3.2. (Inner Approximation) Let f : Rn → R be a locally
Lipschitz function around x. Then, for each ε > 0, there exist λ0 ∈ (0, 1)
and ν0 ∈ (0, 1) such that

co W (x, ν, λ) ⊆ ∂f(x) + εS1(0),

for all λ ∈ (0, λ0] and ν ∈ (0, ν0].

Proof. Suppose that the proposition is not true. Then there exists ε > 0
such that for all n ∈ N , there exist λn, νn ≤ 1

n and gn ∈ S1(0), such
that, we have,

(3.1) ∇fνn(x+ λngn) /∈ ∂f(x) + εS1(0).

On the other hand, {∇fνn(x+ λngn)} is a bounded sequence, and thus
it has a convergent subsequence, say

{
∇fνnk

(x+ λnk
gnk

)
}∞
k=1

. Let

limnk→∞∇fnk
(x + λkgk) = v. By Theorem 2.7, we have v ∈ ∂f(x),

therefore there existsK > 0 such that for all k ≥ K, ∇fνnk
(x+λnk

gnk
) ∈

∂f(x) + εS1(0), and this contradicts (3.1). �

Proposition 3.3. (Outer Approximation) Let f : Rn → R be a locally
Lipschitz function around x. Then, for each ε > 0, there exist λ0 ∈ (0, 1)
and ν0 ∈ (0, 1) such that

∂f(x) ⊆ co W (x, ν, λ) + εS1(0),

for all λ ∈ (0, λ0] and ν ∈ (0, ν0).

Proof. Since ∂f(x) ⊆ co W (x, ν, λ), then the proof is trivial. �
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Now, for each ε > 0, by Proposition 3.2, there exist λε ∈ (0, 1) and
νε ∈ (0, 1) such that

(3.2) co W (x, ν, λ) ⊆ ∂f(x) + εS1(0),

for all λ ∈ (0, λε] and ν ∈ (0, νε]. Define C(x, ε) = co W (x, νε, λε),
for ε > 0 and C(x, 0) = W (x). We show that C(y, ε) is upper semicon-
tinuous at (x, 0).

Proposition 3.4. Let f : Rn → R be locally Lipschitz. Then, C(y, ε) is
upper semicontinuous at (x, 0).

Proof. Let a sequence {(xk, εk)}∞k=1 be such that (xk, εk) → (x, 0) as
k → ∞. We show that if vk ∈ C(xk, εk), for all k, and vk → v, then
v ∈ C(x, 0). By equation (3.2), we have vk ∈ ∂f(xk) + εkS1(0). Thus,
there exist ζk ∈ ∂f(xk) and gk ∈ S1(0) such that vk = ζk + εkgk. So, we
have

lim
k→∞

vk = lim
k→∞

ζk + εkgk = lim
k→∞

ζk = v.

On the other hand, since ∂f(.) is upper semicontinuous, then we have
v = lim

k→∞
ζk ∈ ∂f(x). Therefore, v ∈ ∂f(x) = C(x, 0) and this completes

the proof. �

Corollary 3.5. Let f : Rn → R be locally Lipschitz. Then, for each
ε > 0, there exist δ > 0, λε ∈ (0, 1) and νε ∈ (0, 1) such that

co W (y, ν, λ) ⊆ ∂f(x) + εS1(0),

for all λ ∈ (0, λε], ν ∈ (0, νε] and y ∈ Sδ(x).

Proof. The proof easily follows from upper semicontinuously of C(y, ε)
at (x, 0). �

4. Minimization Algorithm

Here, we develop an algorithm for solving

(4.1) min
x∈Rn

f(x),

where, f is a locally Lipschitz function. We first show how to compute a
descent direction using co W (x, ν, λ), as an approximation of ∂f(x). In
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fact, instead of minv∈∂f(x) ‖v‖2, we propose solving the following prob-
lem,

(4.2)
min ‖v‖2

s.t.
v ∈ co W (x, ν, λ).

But, solving (4.2) being impractical, we approximate W (x, ν, λ) by a
finite number of its elements, and thus instead of (4.2), we solve the
following problem,

(4.3)
min ‖v‖2

s.t.
v ∈Wk,

where, Wk is the convex hull of k given points in W (x, ν, λ). Problem
(4.3) is a quadratic optimization one, and there exist several efficient
methods for solving it [7, 15, 21].

4.1. Computing a descent direction. We first show that the solution
of (4.2) is a descent direction for f at x, for some ν ∈ (0, 1) and λ ∈ (0, 1).

Proposition 4.1. Let f be a locally Lipschitz function, 0 6∈ ∂f(x) and
c ∈ (0, 1). Then, there exist ν0 ∈ (0, 1) and λ0 ∈ (0, 1) such that

f(x+ λg)− f(x) ≤ −cλ‖w‖2,

for all ν ∈ (0, ν0] and λ ∈ (0, λ0], where,

w = argmin {‖v‖2 : v ∈ co W (x, ν, λ)} ,

and g = − w
‖w‖2 .

Proof. By Proposition 3.2, there exist ν0 ∈ (0, 1) and λ0 ∈ (0, 1) such
that

(4.4)
‖w0‖2

2
≤ ‖w‖2,

where, w = argmin {‖v‖2 : v ∈ co W (x, ν, λ)}, for all ν ∈ (0, ν0], λ ∈
(0, λ0] and w0 = argmin {‖v‖2 : v ∈ ∂f(x)}. Select arbitrary λ ∈ (0, λ0]
and ν ∈ (0, ν0]. It now suffices to show that

f(x+ λg)− f(x) ≤ −cλ‖w‖2,
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where, w = argmin {‖v‖2 : v ∈ co W (x, ν, λ)} and g = − w
‖w‖2 . Set ε =

λ(1−c)
2 ‖w0‖2. By Theorem 2.2, there exists ν1 ∈ (0, ν] such that

(4.5) f(z)− f(y) ≤ fν1(z)− fν1(y) + 2ε,

for all y, z ∈ S1(x). By the Mean Value Theorem and equation (4.5), we
have

f(x+ λg)− f(x) ≤ λ∇fν1(x+ tλg)T g + 2ε,

for some t ∈ (0, 1). Since t ∈ (0, 1), then ∇fν1(x+ tλg) ∈W (x, ν, λ). On
the other hand, w = argmin {‖v‖2 : v ∈ co W (x, ν, λ)} and g = − w

‖w‖2 .
Therefore, by equation (4.4), we have

(4.6) f(x+ λg)− f(x) ≤ −λ‖w‖2 + 2ε
≤ −cλ‖w‖2.

�

Next, we present a descent direction algorithm.

Algorithm 1: Descent Direction Algorithm (DDA).
Step 0: (Initialization)

Let γν ∈ (0, 1), ν0 ∈ (0, 1), νmin ∈ (0, 1) γλ ∈ (0, 1), λ0 ∈ (0, 1),
η0 ∈ (0, 1), α ∈ (0, 1), c ∈ (0, .2), δ > 0, g0 ∈ S1(0), W0 = ∅, and
l = 0.

Step 1: (Approximate the Clarke generalized gradient by mollifier
subgradient)
Let vl+1 = ∇fνl

(x+ λlgl) and Wl+1 = Wl ∪ {vl+1}.

Step 2: (Compute a descent direction)
Solve the following minimization problem and let wl+1 be its
solution:

min ‖v‖2

s.t.
v ∈ co Wl+1.

If ‖wl+1‖2 ≤ δ then stop else let gl+1 = − wl+1

‖wl+1‖2 .

Step 3: (Stopping conditions)
If

(4.7) f(x+ ηlgl+1)− f(x) ≤ −cηl‖wl+1‖2



Optimization algorithm for locally nonconvex Lipschitz functions 183

then Stop.

Step 4: (Update parameters)
If νl < νmin then let νl+1 = ν0, λl+1 = λ0, ηl+1 = ηl×α, l = l+1
else let νl+1 = νl × γν , λl+1 = λl × γλ, ηl+1 = ηl, l = l + 1. Go
to Step 1.

In DDA, at each iteration, an approximation of mollifier subgradient
is improved upon by adding a new element of mollifier subgradient, and
hence the approximation of the Clarke generalized gradient is improved.
We show that DDA is well defined by proving that the algorithm termi-
nates after finitely many iterations. The DDA’s parameters are fixed for
each test function at the start, and in each iteration of the minimization
algorithm these parameters are updated.

Proposition 4.2. Let f : Rn → R be a locally Lipschitz function and
x ∈ Rn be such that 0 6∈ ∂f(x). Then, there exist λ0 ∈ (0, 1) and ν0 ∈
(0, 1) such that DDA, using x, λ0, ν0 and other parameters arbitrary,
terminates after finitely many iterations.

Proof. Since fν(.) is continuously differentiable, then there exists t > 0
such that
(4.8)

‖∇fνl
(x)−∇fνl

(x+tg)‖2 ≤
‖w0‖2

8
, ∀t ∈ (0, t), l = 0, 1, 2, . . . ,∀g ∈ S1(0),

where, ‖w0‖2 = minv∈∂f(x) ‖v‖2 and νl is defined as in DDA. Now,
let K ∈ N be such that ηK ≤ t. We show that if ‖wl+1‖2 > δ, for
l = 1, . . . ,K, then the condition (4.7) will be satisfied for l = K. By
Proposition 3.2, there exist ν1 ∈ (0, 1) and λ1 ∈ (0, 1) such that

(4.9)
‖w0‖2

2
≤ ‖w‖2,

where, w = argmin {‖v‖2 : v ∈ co W (x, ν, λ)}, for all ν ∈ (0, ν1], and
λ ∈ (0, λ1]. Let ε = cηK

‖w0‖2
4 and λ0 = min

{
t, λ1

}
. By Theorem 2.2,

there exists ν2 ∈ (0, 1) such that

(4.10) |fν(y)− f(y)| ≤ ε,

for all ν ∈ (0, ν2] and y ∈ S1(x). Let ν0 = min {ν1, ν2}. Since

‖wl+1‖2 = min {‖v‖2 : v ∈ conWl+1} ,
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then we have

(4.11) vT1 gl+1 ≤ −‖wl+1‖2 ≤ −‖w0‖2

2
,

for l = 0, 1, . . . , where, v1 = ∇fν0(x + λ0g0). By the Mean Value
Theorem, we have

(4.12) fν0(x+ ηKgK+1)− fν0(x) = ηK∇fν0(x+ βηKgK+1)T gK+1,

for some β ∈ (0, 1). By (4.8), (4.11), (4.12) and since c ∈ (0, 0.2), we
have

fν0(x+ ηKgK+1)− fν0(x) ≤ ηK∇fν0(x+ λ0g0)T gK+1 + ηK
‖w0‖2

4

≤ ηKv
T
1 gK+1 + ηK(1− 3

2
c)
‖w0‖2

2

≤ 3
2
cηKv

T
1 gK+1,(4.13)

for all l = 0, . . . , and t ∈ (0, t]. Now, by (4.10), (4.11) and (4.13), we
have

f(x+ ηKgK+1)− f(x) ≤ fν0(x+ ηKgK+1)− fν0(x) + 2ε

≤ 3
2
cηKv

T
1 g

T
K+1 + 2ε

≤ −3
2
cηK‖wK+1‖2 + cηK

‖w0‖2

2
≤ −cηK‖wK+1‖2,

and this completes the proof. �

Therefore, DDA terminates after finitely many iterations and at ter-
mination, one of the condition (4.7) or ‖wl+1‖2 ≤ δ is satisfied.

Corollary 4.3. Let f : Rn → R be locally Lipschitz on a compact set
X ⊂ Rn. Then, there exist λ0 ∈ (0, 1), ν0 ∈ (0, 1) and K ∈ N such
that, for each x ∈ X, η0 ∈ (0, 1) and α ∈ (0, 1), DDA terminates after
at most K iterations, by using λ0, ν0 and other parameters arbitrary.

Proof. This is easily established using the proof of Proposition 4.2. �

Now, we show that if the stopping conditions are not satisfied in iter-
ation l, then the new mollifier subgradient improves the approximation
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of ∂f(x); i.e., we have ∇f(x + λl+1gl+1) /∈ Wl+1. To achieve this aim,
we prove the following proposition.

Proposition 4.4. Let f : Rn → R be a locally Lipschitz function and
x ∈ Rn be such that 0 6∈ ∂f(x). Then, there exist η0 ∈ (0, 1), λ0 ∈ (0, 1)
and ν0 ∈ (0, 1) such that if DDA uses x, λ0, η0, ν0 and other param-
eters arbitrary and the stopping conditions in DDA are not satisfied at
iteration l, then ∇f(x+ λl+1gl+1) /∈Wl+1.

Proof. Consider all parameters as defined in Proposition 4.2 and let
η0 ≤ t. If at iteration l < K, the condition (4.7) is not satisfied, then

−cηl‖wl+1‖2 < f(x+ ηlgl+1)− f(x),

and by (4.10) and the Mean-Value Theorem, we have

−cηl‖wl+1‖2 < fνl+1
(x+ ηlgl+1)− fνl+1

(x) + 2ε

≤ ηl∇fνl+1
(x+ θηlgl+1)T gl+1 + 2ε,

for some θ ∈ (0, 1). Since θηl, λl+1 ≤ t, then by (4.8), we have

−cηl‖wl+1‖2 < ηl∇fνl+1
(x+ λl+1gl+1)T gl+1 + 2ε+ ηl

‖wl+1‖2

4

≤ ηlvl+1gl+1 + cηK
‖wl+1‖2

2
+ ηl

‖wl+1‖2

4
≤ ηlv

T
l+1gl+1 + ηlc

′‖wl+1‖2,

where, c′ = c
2 + 1

4 . Thus, we have

(4.14) vTl+1wl+1 < (c+ c′)‖wl+1‖2
2 < ‖wl+1‖2

2.

On the other hand, since wl+1 = argmin {v : v ∈ co Wl+1}, then

vTwl+1 ≥ ‖wl+1‖2
2, ∀v ∈ co Wk+1.

Therefore, by (4.14), we have vl+1 /∈Wl+1 and this completes the proof.
�

In our numerical testing, we approximate ∇fν(.) by Monte-Carlo
method and describe the details in Section 5.
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Table 1. The parameters of MA

k Current iteration
λk

0 Perturbation parameter
s Current inner iteration
γλ Reduction parameter for perturbation parameter
xs

k Current point in inner iteration s
W s

k Current approximation for the Clarke generalized gradient
γk Initial step size
wk

s The minimum point of W s
k

α Reduction parameter for initial step size
gs

k Current search direction in inner iteration s
c the Armijo parameter
νk
1 Lower bound for averaged functions index
νk
0 Initial averaged functions index
γν Reduction parameter for averaged functions indices
δk Update criteria
θλ Reduction parameter for updating perturbation parameter

4.2. Minimization algorithm and its convergence. Now, we use
the descent direction found in DDA to reduce f . The parameters of the
minimization algorithm (MA) are as defined in Table 1. Algorithm 2
below stops when a stopping condition is satisfied; we explain this con-
dition in Section 5, where we discuss our numerical experiments.

Algorithm 2: Minimization Algorithm (MA).

Step 0: (Initialization)
Let x1 ∈ Rn and set k = 1.

Step 1: (Set new parameters)
Set s = 1 and xsk = xk.

Step 2: (Descent direction)
Apply DDA with point xsk, parameters δ = δk, (ν0, νmin) =
(νk0 , ν

k
min), λ0 = λk0 and η0 = γk. Let nsk be the number of

iterations needed for termination of DDA, and let ‖wsk‖2 =

min
{
‖w‖2 : w ∈ conW s

ns
k+1

}
. If ‖wsk‖2 = 0 then Stop else

let gks = − ws
k

‖ws
k‖2

be the descent direction.
Step 3: (Line search)

If the stopping condition (4.7) is satisfied then compute the line
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search parameter, that is, the solution of the following problem,

σ = argmin {f(xsk + σgsk) : σ > 0} ,

construct the next iteration xs+1
k = xsk + σgsk, set s = s+ 1, and

go to Step 2
else (Update parameters)
{we must have ‖wsk‖2 ≤ δk}
set λk+1

0 = λk0×θλ, (νk+1
0 , νk+1

min ) = (νk0 , ν
k
min)×θν , δk+1 = δk×θδ,

γk+1 = γk × θγ , xk+1 = xsk, k = k + 1 and go to Step 1.
Step 4: (Stopping condition)

If λk
0

λk
min

< 10−5 then stop else go to Step 1.

In MA, we have two loops: The first one is the main loop, controlled
by k, that counts the number of occurrences of parameter updating
during the running of the algorithm and the second one is the inner
loop, controlled by s, that counts the number of DDA calls in each
step of the main loop. The following theorem shows when the stopping
criterion (Step 4) of MA is disregarded, then every accumulation point
of the sequence {xk}, generated by MA, belongs to the set

X = {x ∈ Rn : 0 ∈ ∂f(x)} .

Theorem 4.5. Let f : Rn → R be a locally Lipschitz function and
for the starting point x1 ∈ Rn, the level set M = {x : f(x) ≤ f(x1)}
be bounded. Suppose that MA does not terminate after a finite number
of iterations and the stopping criterion (Step 4) of MA is disregarded.
Then, every accumulation point of the sequence {xk}, generated by MA,
belongs to the set

X = {x ∈ Rn : 0 ∈ ∂f(x)} .

Proof. Since M is bounded and f is locally Lipschitz, then we have

f∗ = inf {f(x) : x ∈ Rn} > −∞.

First, we show that after finitely many iterations, the condition ‖wsk‖2 ≤
δk will be satisfied. At iteration k, DDA starts with η0 = γk, and by
Corollary 4.3, there exists Jk ∈ N such that DDA terminates after at
most Jk iterations and we set ηJk

k = γk×αJk and ηn
s
k
k = γk×αn

s
k , where

nsk is the number of iterations needed for the termination of DDA with
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xsk. It is obvious that γJk
k ≤ γ

ns
k

k , for all s. Suppose that the condition
(4.7) is satisfied. Then, we have

(4.15) f(xs+1
k )− f(xsk) ≤ f(xsk + γ

ns
k

k gsk)− f(xsk) ≤ −cγn
s
k

k ‖wsk‖2 < 0.

Therefore, f(xs+1
k ) ≤ f(xsk), for s = 1, 2, . . . . Thus, there exists sk such

that

(4.16) f(xsk)− f(xs+1
k ) ≤ cγJk

k δk,

for all s ≥ sk, since if this equation is not satisfied, then we have
lim
s→∞

f(xsk) = −∞, and this contradicts f(xsk) ≥ f∗ > −∞. Thus, by

(4.15) and (4.16), we have

‖wsk‖2 ≤ δk,

for all s ≥ sk. Hence, after finitely many iterations, there exists sk such
that xk+1 = xsk

k and

(4.17) min
{
‖v‖2 : v ∈ conW sk

n
sk
k +1

}
≤ δk.

Since {xk} ⊆ M and M is bounded, then {xk} has an accumulation
point, namely x∗, and there is a subsequence {xki

} such that xki
→ x∗,

as ki → ∞. For each ε > 0, by Corollary 3.5, there exists K > 0 such
that

(4.18) conW (xki
, νki

0 , λ
ki
0 ) ⊆ ∂f(x∗) + Sε(0),

for all ki ≥ K. On the other hand, we have,

(4.19) conW
ski

n
ski
ki

+1
⊆ co W (xki

, νki
0 , λ

ki
0 ).

Now, by (4.17), (4.18) and (4.19), we have

‖w∗‖2 = min {‖v‖2 : v ∈ ∂f(x∗)} ≤ δki
+ ε.

Since δki
→ 0, as ki →∞, and ε is an arbitrary number, then we have.

‖w∗‖2 = 0.

�

Therefore, 0 ∈ ∂f(x∗) and this completes the proof.



Optimization algorithm for locally nonconvex Lipschitz functions 189

5. Numerical Experiments

We apply our algorithm to test functions in [5] and compare the results
with the ones obtained by the GS algorithm in [5]. We first describe how
the parameters are selected.

(a) Averaged functions indices. Since ∇fν(y) converges to one ele-
ment of the Clarke generalized gradient at x, when ν → 0 and y → x,
then if y is close enough to x, for small enough values of ν, ∇fν(y) can
be considered as an approximation of the Clarke generalized gradient at
x. To find a good approximation of the Clarke generalized gradient, an
appropriate value for ν is very important. In our numerical experiments,
we set ν0 = 10−5, as an initial index value. With larger values of ν0, for
some easy problems, MA converged to the optimal value fast. For gen-
eral problems, however, the algorithm approached approximate optimal
values very fast, but without achieving high accuracies. On the other
hand, ν0 should not be chosen to be very small, since in that case, when
the algorithm gets close to the optimal point, the norm of approximated
mollifier subgradient reduces to zero fast, and therefore the algorithm
fails to find an accurate enough optimal solution. Thus, we used a lower
bound for the value of ν1. Of course, the number of mollifier subgra-
dients computed in each interaction of DDA and the sharpness of the
descent direction depend on the value of the lower bound, ν1. If we se-
lect ν1 to be small, then the number of computed mollifier subgradients
increases, while if we select ν1 close to ν0, then we lose the sharpness of
the descent direction. We set ν1 = 10−10. We also fix ν0 and ν1 in all
iterations and do not update them, that is, we set θν = 1. DDA starts
with an initial value, ν0, and this value is reduced in each iteration until
reaching the lower bound, ν1. In this situation, we reset λ0 and ν0 to
their initial values and reduce the search direction step, λs.

(b) Perturbation parameters. As indicated before, we do not calculate
∇fν(x) as an approximation of the subdifferential at x, but rather com-
pute it at a perturbed x in some direction in the unit sphere. For the
perturbation, we used the parameter λ0 as the step size in a unit direc-
tion, g0. We started with an initial value λ0, and reduced this value in
each iteration in DDA. The value ∇fν(x+λg) is also very sensitive with
respect to λ0. A large value of λ0 slows down the DDA in finding the
descent direction and the number of computed subdifferentials increases
very fast. On the other hand, if λ0 is very small, then the convergence
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to the optimal value slows down significantly. For low dimensional prob-
lems, we set λ0 = 0.1, and set λ0 = 1 for high dimensional problems. We
update λ0, by a reduction parameter γλ, reducing λ0 in each iteration
of DDA until ν0 reaches its lower bound. Then, λ0 is reset to its initial
value. We set γλ = 0.8. When the minimum norm of mollifier subgradi-
ent approximation is less than the update criteria, using the reduction
parameters, we reduce λ0 in Step 3 of MA by the reduction factor θλ.
Numerical experiments showed a good value for the reduction factor to
be 0.1 and for achieving an accurate solution when λ0 = 10−5, we set
θλ = 0.8. We explain our rationale, when we discuss the update criteria
in (f) below.

(c) Monte-Carlo dimension. The numerical experiments showed that
the algorithm was not very sensitive to the size of m, and thus we se-
lected m = 1. For the approximation of averaged functions gradient by
Monte-Carlo method, we generated n random vectors, with n− 1 com-
ponents each, independent and uniformly distributed on [−1

2 ,
1
2 ], and

then approximated each component of averaged functions gradient us-
ing (2.2).

(d) Reduction factor for averaged functions indices. To reduce the
averaged functions indices in DDA, we used the parameter γν . In nu-
merical testing, we set γν = 0.01. This parameter shows how much the
mollifier subgradient should be computed before resetting the parame-
ters.

(e) Initial step size. λs0 is the initial step size for the descent direction.
Regarding the proof of Proposition 4.2, since λs0 ≤ λ0, then we set
λs0 = λ0 and when ν0 reaches its lower bound, we reduce its initial
value by the reduction parameter α. We set α = 0.8 in our numerical
experiments.

(f) Update criteria. When the norm of the minimal point of the
computed Clarke generalized gradient approximation set is small, the
algorithm may not reduce the function sufficiently. In this case, con-
sidering the definition of λν(x + λkgk), we understand that λk is not
small enough, and thus we must update this parameter. Hence, we ap-
ply DDA at the current point using the new initial value of λ0 and with
λs0 = λ0, as described in (b) above. We set δ as an update criterion.
This parameter affects the presumed amount of acceptable reduction of
the descent direction. We set δ = 10−4 in all iterations in MA, that is,
we set θδ = 1.
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(g) Line search method. We set the Armijo parameter as c = 0.2, and
use the simple line search strategy,

σ = inf {f(xsk + σgsk) : σ > 0} .

We start with σ = 1 and backtrack with reduction factor γ = 0.5.
(h) Stopping criteria. We used the size of λ0 as the stopping criterion.

We do not use the norm of mollifier subgradient, because its size depends
on the values of ν0 and λ0, and these values vary for different functions,
and so it can not serve as a good stopping criterion. The algorithm
terminates when λk

0

λ1
0
< 10−5, where λ1

0 is the initial value of λ0 at Step

1 and λk0 is the initial value of λ0 at iteration k.
Our algorithm having a stochastic behavior, we ran the algorithm for

each test function 10 times until we found the optimal solution obtained
by the GS in [5] or the stopping condition was satisfied. In all testings,
we achieved the optimal value even before satisfying the stopping condi-
tion. Next, we applied our algorithm to solve various instances of several
test functions. We observed that the algorithm was able to solve some
large instances of the test functions, that could not be solved by the GS
algorithm in a reasonable amount of time. We computed the average
number of required iterations and the average number of subgradients
evaluations over the 10 runs for each test function, denoting them by
Ave.Iter and Ave.Sub, respectively. In order to have an indication of
the variations in the number of required iterations and computed sub-
gradients in any run of the algorithm for a test function, we computed
the standard deviation of the number of required iterations and com-
puted subgradients for each test function, denoting them by Dev.Iter
and Dev.Sub. We also showed the best run of our algorithm as B.Iter
and its computed subgradient as B.Sub to be compared with the best re-
ported results of the GS algorithm in [5]. For the test functions that the
GS algorithm could not solve, we computed the average and standard
deviation of minimal values, showing these parameters by Ave.Opt.Val
and Dev.Opt.Val. In our results, GS.Iter is the required number of itera-
tions and GS.Sub is the number of computed gradient samplings needed
in the GS algorithm, as reported in [5] (the GS algorithm needs 2n
gradient samplings in each iteration, where n is the size of the problem).

The algorithm was implemented using MATLAB R2007b. The MAT-
LAB codes are available in

http://mehr.sharif.edu/∼yosefpoor/archive/smalg.zip.
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Table 2. Results for exponential Chebyshev approxima-
tion, starting with x = 0.

n Ave.Iter B.Iter Dev.Iter Ave.Sub B.Sub Dev.Sub GS.Iter GS.Sub
2 18.4 14 2.67 50.7 36 7.83 42 168
4 41.5 33 3.47 177.9 154 13.16 63 504
6 87.4 75 12.02 527.1 450 99.37 166 1992
8 134.9 94 28.59 868.4 604 203.88 282 4512

5.1. Chebyshev approximation by exponential sums. Consider
the following function,

f(x) = sup
s∈[l,u]

|h(s, x)|,

where, [l, u] = [1, 10] and h(s, x) = 1
s−

n/2∑
j=1

x2j−1 exp(−x2js). We divided

[l, u] = [1, 10] into 2000 grid points and approximated sup
s∈[l,u]

|h(s, x)|

using these 2000 grid points, and set λ0 = 0.1. More details about this
function are found in [5]. Table 2 shows the results obtained. Like the
GS, our algorithm can not find an accurate solution for this problem,
when n > 8.

5.2. Minimization of eigenvalue products. The aim is to minimize
the product of the largest k eigenvalues of a Hadamard (componentwise)
matrix product A◦X, where A is a fixed positive semidefinite symmetric
matrix and X is a variable symmetric matrix constrained to have ones
on its diagonal and be positive semidefinite. We solved the following
minimization problem,

min f(x) =
k∏
j=1

λj(A ◦X)− ρmin(0, λN (X)),

where λj stands for the jth largest eigenvalue and the N×N symmetric
matrix X has ones on its diagonal and n = N(N − 1)/2 variables from
the vector x in its off-diagonal positions. We set ρ = 100. The function
f is differentiable at a vector x corresponding to a matrix X if X is
positive definite and λk(A ◦X) > λk+1(A ◦X). The matrices A are the
leading N ×N submatrices of a specific 63× 63 covariance data matrix
arising from an environmental application [1]. More details about this
problem are given in [5]. Our results are shown in Table 3.
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Table 3. Results for minimizing eigenvalue product, us-
ing random starting points.

n N Ave.Iter B.Iter Dev.Iter Ave.Sub B.Iter Dev.Sub GS.Iter GS.Sub
1 2 7.2 6 1.75 54 53 1.83 10 20
6 4 66.7 56 8.26 365.1 311 26.10 68 816
15 6 60.1 56 3.07 347.1 341 31.11 150 4500
28 8 80.9 62 52.36 761.3 578 698.34 600 33600
45 10 260 221 20.74 2802.1 2421 287.20 227 20430
66 12 150.2 140 13.4 1840.8 1603 280.10 432 57024
91 14 419.4 377 30.43 9965.1 8142 1315.64 309 56238
120 16 355.2 289 39.63 9896.6 7147 1814.07 595 142800

Table 4. Results for minimization of eigenvalue prod-
uct, using random starting points for N ≥ 20.

n N Ave.Iter Dev.Iter Ave.Sub Dev.Sub Ave.Opt.Val Dev.Opt.Val
190 20 235.3 28.72 4532.8 660.72 1.25470e-03 7.00200e-06
435 30 359 35.30 9331.2 984.30 2.27124e-04 4.06656e-06
780 40 19.6 0.70 110 5.14 8.81554e-05 9.23976e-06
1225 50 28 1.49 206 16.77 9.70365e-06 8.44910e-07
1770 60 35.7 0.95 323.6 21.46 6.38074e-07 6.26068e-08

We set λ0 = 1 and solved this problem for higher dimensions, N ≥ 20,
where the GS algorithm failed to do so. The results are shown in Table
4.

5.3. Spectral and pseudospectral minimization. Consider the pseu-
dospectral abscissa of a matrix, αδ(X), defined, for any given δ ≥ 0,
as the maximum of the real parts of the δ-pseudospectrum of X, that
is, the set of all z in the complex plane such that z is an eigenvalue
of some complex matrix within a distance δ of X [20]. An algorithm
for computing αδ is given in [4]. We got its MATLAB code from
http://www.cs.nyu.edu/faculty/overton/software/index.html.

We considered minimizing the following function,

(5.1) f(x) = αδ(X(x)),

where,

(5.2) X(x) =


−x1 1 0 . . 0
x1 0 1 0 . 0
x2 0 . . . .
. . . . . 0
. . . . . 1
xn 0 . . . 0

 ,
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Table 5. Results for minimizing pseudospectral abscissa
αδ(X(x)) for n = 4 (N = 5), starting with x = 0 (except
for pure spectral abscissa case δ = 0, started randomly).

δ Ave.Iter B.Iter Dev.Iter Ave.Sub B.Iter Dev.Sub GS.Iter GS.Sub
1 25.1 21 3.51 74.1 60 14.19 81 648

1.0e-001 36.8 24 13.27 114.4 79 34.70 105 840
1.0e-002 55.9 38 25.76 190.1 126 78.76 112 896
1.0e-003 102.2 80 15.65 455.8 370 64.75 163 1304
1.0e-004 202.4 175 23.85 745.2 643 84.99 236 1888
1.0e-005 223.1 184 29.26 865.3 721 100.70 322 2576
1.0e-006 200.4 143 51.04 788.9 552 225.35 403 3224

0 186.9 172 15.42 660.1 613 52.31 157 1256

Table 6. Results for minimizing pseudospectral abscissa
αδ(X(x)) for n = 9 (N = 10), starting with x = 0 (except
for pure spectral abscissa case δ = 0, started randomly).

δ Ave.Iter Dev.Iter Ave.Sub Dev.Sub Ave.Opt.Val Dev.Opt.Val
1 5.80 1.75 20.00 4.29 1.97538e+00 1.05935e-08

1.00e-01 63.10 5.04 420.60 31.04 9.53867e-01 2.86390e-04
1.00e-02 237.75 88.25 1981.50 506.60 6.42977e-01 5.88233e-04
1.00e-03 515.50 225.64 2974.30 1147.52 1.64820e-01 1.50363e-03
1.00e-04 406.20 263.59 2411.20 1421.77 1.31202e-01 1.00716e-03
1.00e-05 990.90 413.89 5736.60 2314.74 1.20137e-01 6.75566e-04
1.00e-06 319.00 96.24 2142.80 577.63 1.17700e-01 1.36771e-03

0 283.30 35.25 1826.70 221.46 1.16136e-01 9.41200e-04

and n is the number of parameters, which is one less than the order of
the matrix, say N . For δ = 0, the global minimizer of f is zero and f
is not Lipschitz at this point [5]. More details and the application of
pseudospectral functions can be seen in [5]. Similar to [5], we applied our
algorithm to f for N = 5 and set λ0 = 0.1. The results are summarized
in Table 5. We set λ0 = 1 and solved the problem for N = 10, similar
to the eigenvalue products minimization problem. We note that the GS
algorithm was not able to solve this problem for this dimension. Our
results are presented in Table 6.

5.4. Maximization of distance to instability. The distance to in-
stability for a given matrix X is the least value δ such that some com-
plex matrix Y within distance δ of x is not stable, and we denote it by
dinst(X) [5]. We got the MATLAB code for computing dinst(X) from

http://www.cs.nyu.edu/faculty/overton/software/index.html.
We minimized −dinst (X(x)− sI) over x, given the parameter s > 0 and
X(x), as defined in (5.2). We used 0 as a starting point. We set λ0 = 0.1
for n = 4 (N = 5). The results are summarized in Table 7.
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Table 7. Results for maximizing distance to instability
by minimizing−f(x) = −dinst(X(x)−sI) for n = 4 (N =
5), starting with x = 0.

s Ave.Iter B.Iter Dev.Iter Ave.Sub B.Sub Dev.Sub GS.Iter GS.Sub
1 37.9 30 10.69 110.1 89 64.08 55 440

3.16228e-01 37.6 32 10.50 156.6 99 43.85 71 568
1.00000e-01 87.5 60 64.48 351.5 235 97.90 110 880
3.16228e-02 125.4 69 35.18 539.4 301 161.71 141 1128

Table 8. Results for maximizing distance to instability
by minimizing−f(x) = −dinst(X(x)−sI) for n = 9 (N =
10), starting with x = 0.

s Ave.Iter Dev.Iter Ave.Sub Dev.Sub Ave.Opt.Val Dev.Opt.Val
1 37.90 3.96 165.90 12.67 -2.54119e-01 2.16531e-04

3.16228e-01 390.20 44.29 1872.60 199.18 -6.37732e-03 9.84366e-05
1.00000e-01 1000.00 0.00 4800.00 256.82 -1.89869e-7 5.13051e-8
3.16228e-02 1500.00 0.00 5797.20 206.85 -3.28901e-11 1.41604e-11

The result on this problem is only available for n = 4 for the GS
algorithm in [5]. We tried n = 9 with λ0 = 1. The results are presented
in Table 8. Since satisfying the stopping condition was very time con-
suming in the cases s = 1.0e − 1 and s = 3.16228e − 2, we limited the
number of iterations, for the case s = 1.0e − 1 to 1000 and scaled this
problem by the factor 105, and for s = 3.16228e−2, we limited the algo-
rithm to 1500 iterations and scaled the function by the factor 1010. This
function is very sensitive, and when the size of λ0 is not small enough,
the Monte-Carlo approximation of mollifier gradient turns to equal zero.
So, to prevent this situation, in DDA, we multiplied λ0 by the reduction
factor θλ until the Monte-Carlo approximation would become nonzero,
and while updating, if λ0 < ν0, then we set ν0 = λ0.

The numerical results show that our algorithm has two advantages, as
compared to the GS algorithm. Firstly, in every case in our algorithm,
the average number of iterations for finding the minimum point of the
test function is less than the number of iterations needed by the GS
algorithm (not to mention our better results). Also, the average number
of computed subdifferentials in our algorithm for each function is much
less than the number of computed gradient samplings in the GS algo-
rithm. Having these properties, we applied our algorithm to problems
of higher dimensions, for which the GS algorithm failed to produce so-
lutions in a reasonable amount of time. In the numerical experiments,
the computed standard deviation for the number of iterations and the
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number of computed subgradients are not large, and thus for each test
function, the computing time is not expected to be large either. At the
same time, the deviation in the optimal values is not large either, and
hence we expect the algorithm to be reliable in finding a good estimate
of the optimal point when applied to arbitrary functions.

Note. Here, we fixed the parameters of our algorithm to be the same
in all of our testing. Of course, if one could adjust parameters according
to the specifics of a problem, even better results can be attained.

6. Conclusions

We presented an algorithm for optimization of nonconvex Lipschitz
functions. We first approximated the Clarke generalized gradient by
mollifier subgradients, and then used the approximation to construct a
dynamic algorithm for finding a descent direction. The minimization
algorithm was constructed based on this approximation. We proved the
convergence of our algorithm only requiring the function to be locally
Lipschitz. To show the effectiveness of the algorithm, we implemented
our algorithm and compared our results with the ones obtained by the
GS algorithm as reported in [5]. The numerical results showed our al-
gorithm to be more robust and significantly more efficient than the GS
algorithm in the required number of iterations and the number of com-
puted subgradients. In fact, a descent direction is computed dynam-
ically, without needing too many iterations. This feature makes the
algorithm practical for solving high dimensional problems.
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