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AN AUTOMATON GROUP: A COMPUTATIONAL CASE

STUDY

M. JELODARI MAMAGHANI

Communicated by Jamshid Moori

Abstract. We introduce a two generated weakly branch contract-
ing automaton group G which is generated by a two state automa-
ton on a three letter alphabet. Using its branch structure and the
finiteness nature of a sequence of its factor groups we compute the
order of some of these factors. Furthermore some algebraic proper-
ties of G are detected.

1. Introduction

A finite automaton is a tuple A = (S,D, τ, ε), where S, the set of
states, is a nonempty finite set, D, the set of alphabets, is also a finite
set, τ : D × S → S and ε : D × S → D are the transition and exit
functions, respectively.
The automaton A is said to be invertible if for each state s ∈ S the
function εs = ε(., s) is a bijection. Therefore, if D = {0, 1, . . . , d − 1}
then εs = ε(., s) : D → D is an element of Symm(D), the symmetric
group in d letters. We extend this action to D∗, the regular d− array
tree, by defining

ε(αw, s) = ε(α, s)ε(w, τ(α, s)), ε(∅, s1) = ∅,
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inductively for any w ∈ D∗, and α ∈ D, where ∅ is the empty word.
Therefore, ε preserves the length of the word and respects the order of
occurrence. For the invertible automata A the group G =< εs : s ∈ S >
is said to be the automaton group generated by A on the alphabet D.
This group acts on D∗ faithfully and so it posses an underlaying nice
geometry and the automata groups are distinguished from other classes.
For more on automata groups we refer to [2, 16] .
The notion of automaton group goes back to Glushkov who conjectured
in early 1960’s that the Burnside type problems can be solved using these
groups [1, 10]. Grigorchuk solved the Burnside problem negatively by in-
troducing a 2− group in [12, 8] . This group, among the new generation
of automaton groups, is known as the first Grigorchuk group because
of its nice properties and deep links to geometry, analysis, dynamical
systems and the existence of a continuum of Grigorchuk groups. Almost
at the same time Gupta and Sidki using the construction of Grigorchuk
discovered their p−groups [17].
Finally in 1998 Grigorchuk introduced the basic notion of automaton
group [13].
As mentioned above, automata groups, because of their links to many
mathematical disciplines such as non-linear group theory, fractal geom-
etry, dynamical systems, analysis, C∗ algebras, topology, random walks,
and so on, and, as a new field of research, have attracted the attention
of many mathematicians from all over the world [8, 14, 20, 2, 4, 3, 15,
16, 7, 17, 5, 6].
Due to these characteristics there are many research problems in this
field. One of the problems of interest, is a satisfactory classification of
groups generated by small automata [9]. Already the 2 and 3-state au-
tomata groups on a two letter alphabet have been classified [15, 5, 6].
In this paper we study the group G generated by the automaton from
Figure 1 and discover some of its properties as stated in theorems be-
low. In this respect referring to [18], we observe that the initial automata
a = (1, 1, a)δ and b = (1, 1, b)λ of the automaton generating G are en-
tries number 29 and 54 of table 2, respectively. So that G is one of the
groups of our list of groups and may be denoted by G29,54. Observe that
Fabrykowski-Gupta and Bartholdi-Grigorchuk groups are also elements
of the this list [3].
We remark that the group G, in some respect, is a ternary tree analog
of the Brunner-Sidki-Veira group H [7].
The structure of the paper is as follows: Section 2 is devoted to some
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notions needed throughout the sequel. In sections 3 we prove that G is
a regular weakly branch group over G′ and is a weakly branch group.
In section 4 we obtain some algebraic properties of G mainly concerning
the stabilizer sub-groups of G. In section 5 we prove that G is torsion
free. We show in section 6 that G contains a free sub-semigroup and
hence is of exponential growth. In section 7 we show that G has an
important geometric property, namely it is contracting.

Theorem 1.1. Let G be the automaton group generated by the automa-
ton from Figure 1. Then

(1) The following relations hold in G

(ab−1)2 = b−2a2, a−6b6 = (b3a−3)2, [[a, b][b2, a2], [(ba)2, (ab)2]] = 1.

(2) Let k, l,m, n ∈ Z and

Am,n = [a3m, b3n], Bm,n = [(ba)m, (ab)n], Cm,n = [(ab)m, (b)3n],

then

[Akn, B
k
n] = 1, [AnBn, Bk,l] = 1, Bm,nCn,m = 1,

where Xn = Xn,n.
(3) For k,m, n in Z the following relations hold in G

[[(ba)m, b3n], (ab)k]] = 1, [[(ab)m, a3n], (ba)k]] = 1.

Theorem 1.2. Let G be the automaton group generated by the automa-
ton from Figure 1. Then

(1) G is weakly branch,
(2) G is contracting,
(3) G contains a free sub-semigroup of two generators,
(4) G is of exponential growth,
(5) G is torsion free.

Theorem 1.3. We have

(1) StG(1) =< a3, b3, ab, ba >.
(2) | G

StG(n) | = 3kn, where n = 1, 2, . . . , 7 and k1 = 1, k2 = 3, k3 =

8, k4 = 22, k5 = 63, k6 = 185 and k7 = 550.
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2. Preliminaries

In this section we review some basic notions needed throughout the
sequel. As indicated in the introduction, the group G is generated by
the automata a and b that act on the alphabet D = {0, 1, 2} via δ, λ ∈
Symm(D), where

δ =

(
0 1 2
1 2 0

)
,

and

λ =

(
0 1 2
2 0 1

)
.

So that δλ = λδ and δ3 = λ3 = 1.
Therefore, G is a sub-group of the automorphism group, AutT , of a
rooted ternary tree T with root ∅, vertex set V = D∗ and edge set
E = {(v, vi)|v ∈ V, i ∈ D}. In order to be able to continue our study
we have to include some notions and notations that are necessary in the
sequel.
The length of a vertex v is the number of letters it contains. For a
non-negative integer n the nth level Ln of T is the set of vertices of T of
length n. For example, L0 = ∅ and L1 = D. For a vertex v of T let Tv
be the sub-tree of T hanging from v. Therefore, the set of vertices of Tv
is vw,w ∈ D∗. Obviously χ : Tv → T ;χ(vu) = u is a tree isomorphism
with inverse χ−1(u) = vu. Therefore, Tv and T can be identified and
any g ∈ AutT is conjugate to a g′ ∈ AutTv via this identification. In
fact, let the automorphisms g′ ∈ Aut(Tv) and let g ∈ AutT be so that
the diagram

Tv
g′−→ Tv

χ ↓ ↓ χ
T

g−→ T

is commutative . Then we have g = χ◦g′◦χ−1. This is the identification
that we will use throughout the paper without mentioning.
The subgroup of G that stabilizes the level Ln point-wise, i.e., (g(w) =
w), is denoted by STG(n). In the following sections we will use the no-
tions of self-similar, self-replicating and branch group repeatedly without
any reference and refer the reader to [2, 3] for these and other definitions
used in this paper. Here only we remark that by the general properties
of automaton groups, G is self-similar and self-replicating
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3. G is weakly branch

In this section we study the branch structure of G. More precisely
we show that it is a regular weakly branch group over it’s commutator
sub-group G′ and it is a weakly branch group.

Lemma 3.1. For k,m, n ∈ Z the following relations hold in G.

(1) [(ba)n, (ab)m][(ab)m, (b)3n] = 1;
(2) [(ba)n, (ab)m][(a)3m, (ba)n] = 1;
(3) [[(ba)n, b3m], (ab)k]] = 1;
(4) [(ab)n, a3m], (ba)k] = 1;
(5) [(ab)n, a3m][(ba)n, (ab)m][b3n, (ba)m][a3m, b3n] = 1.

Proof. We prove relations (1) and (5). The other relations are proved
similarly. Using ab = (1, b, a) and ba = (a, 1, b) we observe that

[(ba)n, (ab)m][(ab)m, (b)3n] = (1, 1, [bn, am])(1, 1, [am, bn]) = (1, 1, 1)

m, n=1,2,. . . . Therefore, (1) is proved.
We have

[(ab)n, a3m][(ba)n, (ab)m][b3n, (ba)m][a3m, b3n] =

([bn, am], 1, 1)(1, 1, [bn, am])(1, [bn, am], 1)([am, bn], [am, bn], [am, bn]) =

(1,1,1). This proves (5). �

Proposition 3.2. The group G generated by the automaton from Figure
1 is

(1) regular weakly branch over G′

(2) a weakly branch group, i.e., Ristn 6= {1}, n = 1, 2, . . . .

Proof. (1) The relations

ab−1a−1b = (b−1, a−1b, a), a2b2 = (b, ab, a), ab = (1, b, a)

show that

a2b2ab−1a−2b−1a−1 = (1, [a, b], 1).

This and

a2b2ab−1a−2b−1a−1 = [a, b]a[b, a](aba),

where xy = yxy−1, show that 1 × G′ × 1 ≤ G′. Since G is self-
replicating we have G′ ×G′ ×G′ ≤ G′. The assertion is proved.

(2) Obvious as a corollary of (1).
�
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Figure 1. The automaton generating G

4. Some algebraic properties of G

Lemma 4.1. The elements a and b are of infinite order. So that G is
infinite.

Proof. We prove the order of a in G is infinite. Let W be a power of a.
Then W = a3k+r = (ak, ak, ak)ar, for some integer k and a non-negative
integer 0 ≤ r ≤ 2. It is obvious that this cannot represent 1 in cases
r = 1 and r = 2. In the case r = 0 if W represent 1 then we will have
W = a3k = (ak, ak, ak) = (1, 1, 1). Let n be the smallest positive integer
with the property an = 1. Then n = 3k, k < n and therefore from
a3k = (ak, ak, ak) we have ak = 1, with k < n, which is a contradiction.
The proof for b is similar.

�

Lemma 4.2. We have | G
StG(1) | = 3.

Proof. For g ∈ G we either have g ∈ StG(1) or g /∈ StG(1). In the
second case some h ∈ StG(1) exists such that g = hσ where, σ ∈ {δ, λ}.
For σ = λ we have ag = ahσ ∈ StG(1) and for σ = δ we have a2g =
a2hσ ∈ StG(1). Therefore, g ∈ StG(1) ∪ a−1StG(1) ∪ a−2StG(1). Since
a3 ∈ StG(1), we have a−1StG(1) = a2StG(1) and a−2StG(1) = aStG(1).
Also the sets StG(1), aStG(1) and a2StG(1) are mutually disjoint. The
proof is complete. �

Lemma 4.3. The sub-group StG(1) is generated by {a3, b3, ab, ba}.

Proof. Let H =< a3, b3, ab, ba >. As {a3, b3, ab, ba} ⊂ StG(1), we ob-
serve that H ≤ StG(1). Therefore, the elements of H fix the level L1 of
T3 point-wise. As the elements

ba3b−1 = ba.a3(ba)−1, b(ab)b−1 = ba, b(ba)b−1 = b2a2(ba)−1,

ab3a−1 = abb3(ab)−1, a(ab)a−1 = a2b2(ab)−1, a(ba)a−1 = ab,

are in H, we conclude that H is a normal sub-group of G and hence
of StG(1). Now we prove G = H ∪ aH ∪ a2H. First we observe that
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the sets H ∩ aH, aH ∩ a2H and H ∩ a2H are all empty. As H ∪ aH ∪
a2H ⊂ G we observe that |G/H| ≥ 3. Now we prove |G/H| = 3. To
this end we show that every element g = aα1bβ1 . . . aαmbβm in G can
be written as g ≡ ak(modH) with k = 0, 1, 2. This will be done by
induction on the length of g with respect to {a, a−1, b, b−1}. We have
b = a2(b2a2)−1b3, a−1 = a2a−3, b−1 = a(ba)−1. Therefore, the assertion
is proved for |g| = 1. Let us assume that it is true for |g| ≤ n. Consider
g = aα1bβ1 . . . aαmbβm with |g| = |α1| + |β1| + . . . |αm| + |βm| = n + 1.
Four cases may occur:

(1) α1 > 0. Here using the assumption of induction there is h ∈ H
and k ∈ {0, 1, 2} such that g = aakh = ak+1h, which proves the
assertion in this case.

(2) α1 = 0, β1 < 0. We write

g = bβ1 . . . aαmbβm = b−1bβ1+1 . . . aαmbβm .

Now the length of g′ = bβ1+1 . . . aαmbβm is at most n and the
induction assumption can be invoked for it. Therefore, g′ = akh′

for some k = 0, 1, 2 and h′ ∈ H. We have g = b−1g′ = b−1akh′.
From this relation for k = 0 we obtain g = b−1g′ = a(a−1b−1)h′ ∈
aH. Also for k = 1 we have g = b−1g′ = b−1a1h′ = b−2bah′ =
bb−3bah′ = a−1abb−3bah′ = a2a−3abb−3bah′ ∈ a2H. In the case
k = 2 we have g = b−1g′ = b−1a2h′ = b−1a−1a3h′ ∈ H.
The proofs of the remaining two case

(3) α1 = 0, β1 > 0
(4) α1 < 0

are similar. Therefore G
H ≤ 3 and finally we have, |GH | = 3.

Since |GH | = 3 = | G
StG(1) | and H ≤ StG(1) we have, StG(1) = H.

The proof is complete.

�

Now since H is a sub-group of StG(1) the above Lemma shows that
StG(1) = H.
Remark For any positive integer n, each element g ∈ G induces a
permutation πn(g) on Ln, the nth level of T . As an example for n = 1
and g = a, we have L1 = {0, 1, 2} and labeling these vertices by 1, 2, 3,
respectively, the induced permutation on L1 is the cycle

π1(a) =

(
1 2 3
2 3 1

)
= (1, 2, 3).
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In general, let n ≥ 1 be a positive integer. To find the permutations
induced by a and b on Ln we label the 3n words of length n in alphabet
0, 1, 2 belonging to Ln as follows: using the element O = 0 . . . 0 of Ln we
have Ln = {a0(O) := O, a(O), a2(O), . . . , a3

n−1(O)}. Now we consider
l = k + 1 : k = 0, . . . , 3n − 1 as the label of the element ak(O), k =
0, 1, . . . , 3n − 1, respectively. It is clear that the permutation πn(a) ∈
Symm(3n) induced by a on Ln is the cycle (1, . . . , 3n). To find πn(b) we
have to determine the numbers

b(l), l = 1, . . . , 3n.

For example for n = 2, denoting each element with its label we have

L2 = {1 = a0(00) = 00, 2 = a1(00) = 10, 3 = a2(00) = 20, 4 = a3(00) =

01, 5 = a4(00) = 11, 6 = a5(00) = 21, 7 = a6(00) = 02, 8 = a7(00) = 12,
9 = a8(00) = 22} and π2(a) is the cycle (1, 2, 3, 4, 5, 6, 7, 8, 9). For b we
have b(1) = 3, b(2) = 1, b(3) = 8, b(4) = 6, b(5) = 4, b(6) = 2, b(7) =
9, b(8) = 7, b(9) = 5. Therefore, the permutation induced by b on L2 is
the cycle:

π2(b) =

(
1 2 3 4 5 6 7 8 9
3 1 8 6 4 2 9 7 5

)
= (1, 3, 8, 7, 9, 5, 4, 6, 2).

We extend πn to a homomorphism from G to Symm(3n) and use it
several times in the sequel concerning the first and second isomorphism
theorems .
We also remark that since G =< a, b >, for any positive integer n we
have

Im(πn) =< πn(a), πn(b) > .

Lemma 4.4. We have |StG(1)
StG(2) | = 32.

Proof. Let Symm(9) be the symmetric group on 9 elements. Using the
above remark, consider the homomorphism π′ := π2|StG(1) : StG(1) →
Symm(9). We have

π′(a3) = (1, 4, 7)(2, 5, 8)(3, 6, 9), π′(b3) = (1, 7, 4)(2, 8, 5)(3, 9, 6),

and
π′(ab) = (1, 4, 7)(3, 9, 6), π′(ba) = (2, 8, 5)(3, 6, 9).

We observe that StG(2) = kerπ′. In fact if π′(g) = 1 then g induces the
identity permutation on L2 and hence g ∈ StG(2). Now using the above
Lemma and the GAP program we observe that |Im(π′)| = 9. Therefore,
by the first isomorphism theorem the proof is complete. �



Automaton Group 915

Corollary 4.5. We have | G
StG(2) | = 33.

Proof. The result follows from the above two Lemmas and the second
isomorphism theorem for groups. �

Corollary 4.6. The set {1, ab, ba, a3, b3, (ab)3, (ba)3, a4b, b4a} is a coset
representative mod(StG)(2) of StG(1).

Proof. Computing the values of the homomorphism π2 for the elements
of the given set we observe that the set of these values is Im(π2). The
proof is complete. �

Lemma 4.7. We have

(1) | G
StG(3) | = 38,

(2) | G
StG(4) | = 322,

(3) | G
StG(5) | = 363,

(4) | G
StG(6) | = 3185,

(5) | G
StG(7) | = 3550.

Proof. 1) Define the homomorphism π3 : G → Symm(27) by induced
permutations
π3(a) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27)
and
π3(b) = (1, 3, 8, 7, 9, 23, 22, 24, 20, 19, 21, 26, 25, 27, 14, 13, 15, 11, 10, 12,
17, 16, 18, 5, 4, 6, 2) on G.

Using the GAP software we obtain |Im(π3)| = 6561 = 38.
2) Let the permutation induced on L4 by a be π4(a) = (1, 2, . . . , 81).
Then the induced permutation by b will be
π4(b) = (1, 3, 8, 7, 9, 23, 22, 24, 20, 19, 21, 26, 25, 27, 68, 67, 69, 65, 64, 66,
71, 70, 72, 59, 58, 60, 56, 55, 57, 62, 61, 63, 77, 76, 78, 74, 73, 75, 80, 79, 81,
41, 40, 42, 38, 37, 39, 44, 43, 45, 32, 31, 33, 29, 28, 30, 35, 34, 36, 50, 49, 51,
47, 46, 48, 53, 52, 54, 14, 13, 15, 11, 10, 12, 17, 16, 18, 5, 4, 6, 2).
The subgroup of the symmetric group Symm(81) generated by these
permutations is of order 31381059609 = 322.
3) As above, let the permutation induced on L5 by a be π5(a) = (1, . . . , 243).
Then the induced permutation by b will be
π5(b) = (1, 3, 8, 7, 9, 23, 22, 24, 20, 19, 21, 26, 25, 27, 68, 67, 69, 65, 64, 66, 71,
70, 72, 59, 58, 60, 56, 55, 57, 62, 61, 63, 77, 76, 78, 74, 73, 75, 80, 79, 81, 203,
202, 204, 200, 199, 201, 206, 205, 207, 194, 193, 195, 191, 190, 192, 197, 196,
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198, 212, 211, 213, 209, 208, 210, 215, 214, 216, 176, 175, 177, 173, 172, 174,
179, 178, 180, 167, 166, 168, 164, 163, 165, 170, 169, 171, 185, 184, 186, 182,
181, 183, 188, 187, 189, 230, 229, 231, 227, 226, 228, 233, 232, 234, 221, 220,
222, 218, 217, 219, 224, 223, 225, 239, 238, 240, 236, 235, 237, 242, 241, 243,
122, 121, 123, 119, 118, 120, 125, 124, 126, 113, 112, 114, 110, 109, 111, 116,
115, 117, 131, 130, 132, 128, 127, 129, 134, 133, 135, 95, 94, 96, 92, 91, 93, 98,
97, 99, 86, 85, 87, 83, 82, 84, 89, 88, 90, 104, 103, 105, 101, 100, 102, 107, 106,
108, 149, 148, 150, 146, 145, 147, 152, 151, 153, 140, 139, 141, 137, 136, 138,
143, 142, 144, 158, 157, 159, 155, 154, 156, 161, 160, 162, 41, 40, 42, 38, 37, 39,
44, 43, 45, 32, 31, 33, 29, 28, 30, 35, 34, 36, 50, 49, 51, 47, 46, 48, 53, 52, 54, 14,
13, 15, 11, 10, 12, 17, 16, 18, 5, 4, 6, 2).
Now using GAP we obtain

| G

StG(5)
| = 1144561273430837494885949696427 = 363

as desired.
4) Again let the permutation induced on L6 by a be π6(a) = (1, 2, . . . , 729).
Then calculation by hand shows that the induced permutation by b is the
cycle shown in Figure 2. Using GAP we observe that the permutation
group < π6(a), π6(b) > is a subgroup of order

185110955751455333384474038361095815053532267407820328039323804

76024584374357028238763043 = 3185

of S729.
5) Here hand calculation of π7(a)and π7(b) are not useful. Instead one
can use the part of GAP relevant to automata groups which has been
added recently to GAP [19]. One only needs to factor the 263 digit
number to see that the assertion | G

StG(7) | = 3550 is really true.

π6(b) = (1, 3, 8, 7, 9, 23, 22, 24, 20, 19, 21, 26, 25, 27, 68, 67, 69, 65, 64, 66,
71, 70, 72, 59, 58, 60, 56, 55, 57, 62, 61, 63, 77, 76, 78, 74, 73, 75, 80, 79, 81,
203, 202, 204, 200, 199, 201, 206, 205, 207, 194, 193, 195, 191, 190, 192, 197,
196, 198, 212, 211, 213, 209, 208, 210, 215, 214, 216, 176, 175, 177, 173, 172,
174, 179, 178, 180, 167, 166, 168, 164, 163, 165, 170, 169, 171, 185, 184, 186,
182, 181, 183, 188, 187, 189, 230, 229, 231, 227, 226, 228, 233, 232, 234, 221,
220, 222, 218, 217, 219, 224, 223, 225, 239, 238, 240, 236, 235, 237, 242, 241,
243, 608, 607, 609, 605, 604, 606, 611, 610612, 599, 598, 600, 596, 595, 597,
602, 601, 603, 617, 616, 618, 614, 613, 615, 620, 619, 621, 581, 580, 582, 578,
577, 579, 584, 583, 585, 572, 571, 573, 569, 568, 570, 575, 574, 576, 590, 589,
591, 587, 586, 588, 593, 592, 594, 635, 634, 636, 632, 631, 633, 638, 637, 639,
626, 625, 627, 623, 622, 624, 629, 628, 630, 644, 643, 645, 641, 640, 642, 647,
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646, 648, 527, 526, 528, 524, 523, 525, 530, 529, 531, 518, 517, 519, 515, 514,
516, 521, 520, 522, 536, 535, 537, 533, 532, 534, 539, 538, 540, 500, 499, 501,
497, 496, 498, 503, 502, 504, 491, 490, 492, 488, 487, 489, 494, 493, 495, 509,
508, 510, 506, 505, 507, 512, 511, 513, 554, 553, 555, 551, 550, 552, 557, 556,
558, 545, 544, 546, 542, 541, 543, 548, 547, 549, 563, 562, 564, 560, 559, 561,
566, 565, 567, 689, 688, 690, 686, 685, 687, 692, 691, 693, 680, 679, 681, 677,
676, 678, 683, 682, 684, 698, 697, 699, 695, 694, 696, 701, 700, 702, 662, 661,
663, 659, 658, 660, 665, 664, 666, 653, 652, 654, 650, 649, 651, 656, 655, 657,
671, 670, 672, 668, 667, 669, 674, 673, 675, 716, 715, 717, 713, 712, 714, 719,
718, 720, 707, 706, 708, 704, 703, 705, 710, 709, 711, 725, 724, 726, 722, 721,
723, 728, 727, 729, 365, 364, 366, 362, 361, 363, 368, 367, 369, 356, 355, 357,
353, 352, 354, 359, 358, 360, 374, 373, 375, 371, 370, 372, 377, 376, 378, 338,
337, 339, 335, 334, 336, 341, 340, 342, 329, 328, 330, 326, 325, 327, 332, 331,
333, 347, 346, 348, 344, 343, 345, 350, 349, 351, 392, 391, 393, 389, 388, 390,
395, 394, 396, 383, 382, 384, 380, 379, 381, 386, 385, 387, 401, 400, 402, 398,
397, 399, 404, 403, 405, 284, 283, 285, 281, 280, 282, 287, 286, 288, 275, 274,
276, 272, 271, 273, 278, 277, 279, 293, 292, 294, 290, 289, 291, 296, 295, 297,
257, 256, 258, 254, 253, 255, 260, 259, 261, 248, 247, 249, 245244, 246, 251,
250, 252, 266, 265, 267, 263, 262, 264, 269, 268, 270, 311, 310, 312, 308, 307,
309, 314, 313, 315, 302, 301, 303, 299, 298, 300, 305, 304, 306, 320, 319, 321,
317, 316, 318, 323, 322, 324, 446, 445, 447, 443, 442, 444, 449, 448, 450, 437,
436, 438, 434, 433, 435, 440, 439, 441, 455, 454, 456, 452, 451, 453, 458, 457,
459, 419, 418, 420, 416, 415, 417, 422, 421, 423, 410, 409, 411, 497, 406, 408,
413, 412, 414, 428, 427, 429, 425, 424, 426, 431, 430, 432, 473, 472, 474, 470,
469, 471, 476, 475, 477, 464, 463, 465, 461, 460, 462, 467, 466, 468, 482, 481,
483, 479, 478, 480, 485, 484, 486, 122, 121, 123, 119, 118, 120, 125, 124, 126,
113, 112, 114, 110, 109, 111, 116, 115, 117, 131, 130, 132, 128, 127, 129, 134,
133, 135, 95, 94, 96, 92, 91, 93, 98, 97, 99, 86, 85, 87, 83, 82, 84, 89, 88, 90,
104, 103, 105, 101, 100, 102, 107, 106, 108, 149, 148, 150, 146, 145, 147, 152,
151, 153, 140, 139, 141, 137, 136, 138, 143, 142, 144, 158, 157, 159, 155, 154,
156, 161, 160, 162, 41, 40, 42, 38, 39, 44, 43, 45, 32, 31, 33, 29, 28, 30, 35, 34,
36, 50, 49, 51, 47, 46, 48, 53, 52, 54, 14, 13, 15, 11, 10, 12, 17, 16, 18, 5, 4, 6, 2)

Figure 2. The cycle π6(b)

�
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5. G is torsion free

In this section we prove that for any integer k ≥ 2 the equationXk = 1
has no nontrivial solution in G. In other words, we prove the following
proposition.

Proposition 5.1. The group G is torsion free.

We prove this assertion through the following Lemmas. But first we
need a definition.

Definition 5.2. For any reduced word W = aα1bβ1 . . . aαnbβn in alphabet
{a, b, a−1, b−1}, where α1, βn ∈ Z and β1 . . . αn−1 ∈ Z−{0}, the numbers∑n

1 αk and
∑n

1 βk are called the exponent sums of a and b in W and are
denoted by |a|W and |b|W , respectively.

Lemma 5.3. For any g ∈ G with |g| = n > 2 and g = (g0, g1, g2)σ,
for some σ ∈ sym(D), we have |gi| < |g|, i = 0, 1, 2. Specifically, for any
g ∈ StG(1) we have |gi| < |g|, i = 0, 1, 2.

Proof. We use induction on n = |g|. As direct computation shows that
the assertion is true for n = 3. Now let it be true for all g with |g| =
n ≥ 3 and consider h ∈ G with |h| = n + 1. Then h = gu for some
g ∈ G with |g| = n and u ∈ {a, a−1, b, b−1}. Writing h = (h0, h1, h2)σ
and g = (g0, g1, g2)µ we observe that the relation |gi| = |hi| holds for
two components of g and h, and, a third component of them differ by 1
in length. Let |h3| = |g3| ± 1. We observe that

|h3| = |g3| ± 1 < |g| ± 1 ≤ |h|.

Now by induction hypothesis the proof of the first part is complete.
To prove the second assertion we remark that except for the elements
a−1b and b−1a the assertion is also true for all elements of length 2 in G
and hence for elements g ∈ StG(1) .

�

Lemma 5.4. If a reduced word w in alphabet {a, b, a−1, b−1} represent
the unit element of G then |a|W = |b|W = 0.

Proof. We prove the Lemma by induction on the length |W | of W . For
|W | = 1 or |W | = 2 there is no reduced word that represent 1 in G.
Let the assertion be true for all words W with |W | ≤ n and consider the
reduced word W with |w| = n + 1. As W represents 1 in G, it can be
written W = (W0,W1,W2). Therefore, Wi = 1, i = 0, 1, 2 represent the
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trivial element of G as well. Since |Wi| < |W |, i = 0, 1, 2, the induction
hypothesis implies that

|a|Wi = |b|Wi = 0, i = 0, 1, 2.

From a = (1, 1, a)δ and b = (1, 1, b)λ we conclude that

|a|W = |a|W0W1W2 = |a|W0 + |a|W1 + |a|W2 = 0,

and

|b|W = |b|W0W1W2 = |b|W0 + |b|W1 + |b|W2 = 0.

The proof is complete. �

Lemma 5.5. The equation x3 = 1 has no solution in G.

Proof. In contrary let W be a solution of the given equation with least
length in alphabet {a, a−1, b, b−1}. If W = (W0,W1,W2) is a solution
of the given equation then the relations |Wi| < |W |, i = 0, 1, 2 will
contradict the assumption. So let W = W ′a for some W ′ ∈ StG(1)−{1}.
Write W ′ = (W0,W1,W2). Using emma (4.3) W ′ can be represented as

a word in alphabet {a±3, b±3, (ab)±1, (ba)±1}. Using this representation
and the relations

a3 = (a, a, a), b3 = (b, b, b), ab = (b, 1, a), ba = (1, a, b)

we deduce that

|a|W0W2W1 ≡ |b|W0W2W1(mod3).(5.1)

In order that W = W ′a satisfy the given equation we must have

W 3 = ((W0,W1,W2)a)3 = ((W0,W1,W2a)δ)3 =

(W0W1W2a,W1W2aW0,W2aW0W1) = 1.

Therefore, W0W1W2a must represents the trivial element of the group.
Now using Lemma (5.4) we have on one hand

|a|W0W1W2a = |b|W0W1W2a = 0,

and on the other hand

|b|W0W1W2a = |b|W0W1W2 , |a|W0W1W2a = |a|W0W1W2 + 1.

Therefore,

|b|W0W1W2 = 0, |a|W0W1W2 + 1 = 0,

which contradicts (5.1) The proof is complete. �

Lemma 5.6. The equation x2 = 1 has no solution in G.
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Proof. Let W ∈ G be a solution of the equation with a least length.
Then we must have W 2 = (W 2

0 ,W
2
1 ,W

2
2 ) = 1. Therefore, Wi, i = 0, 1, 2

are also solutions of the equation. This along with |Wi| < |W |, i = 0, 1, 2
contradicts the assumption. �

To complete the proof of the proposition (5.1) using Lemmas (5.4)
and (5.5) the following observation will be sufficient.

Lemma 5.7. For any integer k ≥ 2 the equation xk = 1 has no non-
trivial solution in G.

6. Free sub-semigroup

In this section we show that G is of exponential growth.

Proposition 6.1. The semigroup M generated by the three state au-
tomaton from Figure 1 is of exponential growth.

This proposition is a corollary of the following Lemmas.

Lemma 6.2. If as an automorphism of the rooted ternary tree the word
W in alphabet {a, b}, say W = ak1bl1 . . . aknbln , is an element of St1(G)
then |a|W ≡ |b|W (mod3).

Proof. Using a = (1, 1, a)δ and b = (1, 1, b)λ we observe that the expo-
nents of δ and λ in W are k1 + . . . + kn and l1 + . . . + ln, respectively.
This along with δ = λ−1 implies the assertion. �

Lemma 6.3. If a word W in alphabet {a, b} as an automorphism fixes
the vertices 0, 1, 2 of T3, then writing W = (W0,W1,W2) we have |Wi| <
|W |, i = 0, 1, 2.

Proof. This is a partial case of the Lemma (5.3) �

Lemma 6.4. The semigroup M is free.

Proof. As calculations show there are no two words in alphabet {a, b} of
the same length l with l ≤ 4 representing the same element of G. Now
consider two different words U and V in alphabet {a, b} that represent
the same element g of G and such that l = max(|U |, |V |) is minimal.
Write U = (U0, U1, U2)σ and V = (V0, V1, V2)σ, with σ ∈ {1, δ, λ}. For
σ = 1 we observe that each of the three pairs U0, V0; U1, V1 and U2, V2
represent the same element say g0, g1 and g2, respectively, of G. Since U
and V are different words in {a, b}, Ui is different from Vi for some i ∈
{0, 1, 2}. By the Lemma (6.3) for this i we have max(|Ui|, |Vi|) < l. This
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contradicts the minimality of l. For σ = δ consider Ub = (U0b, U1, U2)
and V b = (V0b, V1, V2). We observe that each of the three pairs U0b, V0b;
U1, V1 and U2, V2 represent the same element, say h0, h1 and h2 of G,
respectively, and either U0b is different from V0b or Ui is different from
Vi for some i ∈ {1, 2}. In particular, the pair U0, V0 represent the same
element of G. In any case, using Lemma (5.3) we reach to a contradiction
with the choice of l. For σ = λ we consider the words Ua = (U0, U1a, U2)
and V a = (V0, V1a, V2) and proceed as above. �

7. G is a contracting group

Proposition 7.1. Let Γ be an automaton group generated by a finite
automaton over the alphabet {0, 1, . . . , d−1}. If Γ contains a finite index
contracting subgroup Φ. Then Γ is contracting .

Proof. The proof is based on the generating set {a1, a2, . . . , an} coming
from the finite automaton. Since Φ is contracting, there are constants
n0 ∈ N,0 < λ < 1 and C such that

|si| < λ|s|+ C(7.1)

for s ∈ Φ with ith component si and |s| > n0.
Choose R = {u0 = 1, u1, . . . , um−1} as a system of representatives for
Γ mod (Φ). Let li = |ui|, i = 1, 2, . . . ,m − 1 be the length of ui with
respect to the generating set {a1, a2, . . . , an} and l = max{l1, . . . , lm−1}.
Let uij be the jth component of ui on decomposing ui with respect to
the structure of the automaton generating Γ. Suppose M = max{|uij | :
i = 1, . . . ,m− 1; j = 0, 1, . . . , d− 1}.
For g ∈ Γ , g = uis for some ui ∈ R and some s ∈ Φ, we have s = u−1i g
and so

|s| < |ui|+ |g|.(7.2)

Also gi = uijsk, where gi ,uij and sk are the ith, ijth and kth component
of g, ui and s, respectively. This implies

|gi| < |uij |+ |sk|.(7.3)

Using (7.1) and (7.3) we obtain

|gi| < |uij |+ λ|s|+ C.(7.4)

This and (7.2) imply that

(7.5) |gi| < |uij |+ λ(|ui|) + |g|) + C = λ|g|+ |uij |λ|ui|+ C.
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Now (7.4) implies

|gi| < M + λl + λ|g|+ C = λ|g|+ (M + λl + C).

The proof is complete. �

Corollary 7.2. The group G generated by the automaton from Figure
1 is contracting .

Proof. By Lemma (4.2), StG(1) is of finite index in G and we have
G = StG(1) ∪ StG(1)a ∪ StG(1)b. First we prove StG(1) is contracting.
Consider g ∈ StG(1) with a decomposition g = (g0, g1, g2). For g ∈
{a±3, b±3, (ab)±1, (ba)±1} a direct computation shows that

|gi| <
1

2
|g|+ 1, i = 0, 1, 2.

Suppose the assertion is true for g with |g| < n and consider g ∈ StG(1)
with |g| = n. Then by Lemma (4.3) g can be written in a unique way as

(1) g = ug′ with u ∈ {a±3, b±3}, |g| = 3 + |g′| and g′ ∈ StG(1); or
(2) g = vg′ with v ∈ {(ab)±3, (ba)±3}, |g| = 2 + |g′| and g′ ∈ StG(1).

Writing g′ = (g′0, g
′
1, g
′
2) from items (1) and (2) we obtain

(1’) gi = xg′i, x ∈ {a±1, b±1}, |gi| = |g′i|+ 1, i = 0, 1, 2, and
(2’)gi = xg′i, x ∈ {1, a±1, b±1}, |gi| ≤ |g′i|+ 1, i = 0, 1, 2, respectively.
Using |g′| < |g| = n and the induction in the case (1’) we get

|gi| = |g′i| <
1

2
(|g′|+ 1) = 1 +

1

2
(|g| − 2) =

1

2
|g| < 1

2
(|g|+ 1), i = 0, 1, 2

in case (2’) we either obtain

|gi| = 1 + |g′i| < 1 +
1

2
(|g′|+ 1) =

1

2
(|g| − 1) <

1

2
(|g|+ 1), i = 0, 1, 2

or

|gi| = 1 + |g′i| < 1 +
1

2
(|g′|+ 1) = 1 +

1

2
(|g| − 1) =

1

2
(|g|+ 1), i = 0, 1, 2.

Now consider h = ga ∈ StG(1)a with g = (g′0, g
′
1, g
′
2) ∈ StG(1), and let

|h| = |g|+ 1. Then h = (g′0, g
′
1, g
′
2a)δ and

|g′2a| <
1

2
(|g|+ 1) + 1 <

1

2
(|h|) + 1.

In case |h| = |g| − 1 we have

|g′2a| <
1

2
(|g|+ 1) + 1 <

1

2
(|h|+ 2) + 1 =

1

2
|h|+ 2.
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Other cases are treated similarly. Therefore choosing λ = 1
2 and C = 2

we observe that G is contracting. �
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