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A PRELUDE TO THE THEORY OF RANDOM WALKS

IN RANDOM ENVIRONMENTS

F. REZAKHANLOU

Communicated by Saeid Azam

Abstract. A random walk on a lattice is one of the most fun-
damental models in probability theory. When the random walk is
inhomogenous and its inhomogeniety comes from an ergodic sta-
tionary process, the walk is called a random walk in a random
environment (RWRE). The basic questions such as the law of large
numbers (LLN), the central limit theorem (CLT), and the large de-
viation principle (LDP) are not fully understood for RWRE. Some
known results in the case of LLN and LDP are reviewed. These
results are closely related to the homogenization phenomenon for
Hamilton-Jacobi-Bellman equations when both space and time are
discretized.

1. Introduction

A random walk on a lattice is one of the simplest and most funda-
mental models in probability theory. For a random walk, a probability
density p : Zd → [0, 1] with

∑
z p(z) = 1 is given. The set of such

probability densities is denoted by Γ. Given p ∈ Γ, we define a ran-
dom walk (Xn : n = 0, 1, . . . ) with the following rules: If Xn = a, then
Xn+1 = a + z with probability p(z). Put differently, for each initial
position a ∈ Zd, we construct a probability measure P a on the space of
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sequences (xn : n ∈ N) such that P a(x0 = a) = 1 and if zn = xn+1− xn,
then the sequence (zn : n ∈ N) consists of independent random variables
with each zn distributed according to p(·) ∈ Γ. For simplicity, let us
assume that p(·) is of finite range, i.e., p(z) = 0 for |z| > R0 for some
R0. The space of such p(·) is denoted by Γ0. We now review some basic
facts about random walks with p ∈ Γ0:

(i) Law of Large Numbers (LLN). There exists an asymptotic ve-
locity. That is,

(1.1)
1

n
X[nt] = x+ v̄t+ o(1)

with probability one with respect to P [xn], where

(1.2) v̄ =
∑
z

p(z)z.

(ii) Central Limit Theorem (CLT). There exists a Gaussian cor-
rection to (1.1), namely

(1.3)
1

n
X[nt] = x+ v̄t+

1√
n
B(t) + o

(
1√
n

)
with B(·) a diffusion with covariance

(1.4) E(B(t) · a)2 = t
∑
z

p(z)(z · a)2.

(iii) Large Deviation Principle (LDP). The probability of large
deviations from the mean is exponentially small with a precisely defined
exponential decay rate. More precisely, for every bounded continuous
function f : Rd → R,

(1.5) lim
n→∞

1

n
logE[xn] exp

(
nf

(
1

n
X[nt]

))
= sup

v
(f(x+ vt)− tL̄(v))

where L̄ is the Legendre transform of H̄ with H̄ given by

(1.6) H̄(P ) = log
∑
z

ez·P p(z).

Let us make some comments about (1.5) and (1.6). First observe
that if we denote the right-hand side of (1.5) by ū(x, t), then ū solves a
Hamilton–Jacobi PDE of the form

(1.7) ūt = H̄(ūx)
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subject to the initial condition ū(x, 0) = f(x). The right-hand side
of (1.5) is known as Hopf–Lax–Oleinik Formula and is valid for any
Hamilton–Jacobi PDE with convex Hamiltonian function H̄.

As our second comment, let us mention that a large-deviation princi-
ple is informally stated as

(1.8) P [xn]

(
1

n
X[nt] ≈ x+ tv

)
≈ e−ntL̄(v).

The equivalence of (1.8) to the statement (1.1) is the celebrated Varad-
han’s lemma. Here is the meaning of (1.8): Imagine that the velocity
of the walk is near v for some v 6= v̄. By LLN, this would happen with
a probability that goes to 0. This happens exponentially fast with an
exponential rate given by tL̄(v). Since the approximation on the left-
hand side of (1.8) is of the form X[nt] ≈ nx+ (nt)v, the right-hand side

is of the form exp(−(nt)L̄(v)). It is not hard to justify the variational
form of ū(x, t). It has to do with the elementary principle that a sum of
exponentials is dominated by the term of the largest exponent, i.e.,

lim
n→∞

1

n
log(eλ1n + · · ·+ eλkn) = sup

1≤j≤k
λj .

We can also explain the relationship between (1.5) and (1.6). First,
observe that if we allow a linear function f(x) = P · x in (1.5), then the
left-hand side equals

lim
n→∞

1

n
logE[xn] exp(P ·X[nt]) = t lim

m→∞

1

m
logE0 exp

(
P · [xm]

t

+ P ·Xm

)
= t lim

m→∞

1

m
logE0 exp(P · z0 + · · ·

+ P · zm−1) + P · x

= t lim
m→∞

1

m
log[exp(H̄(P ))]m + P · x

= P · x+ tH̄(P ).

This equals the right-hand side of (1.5) if L̄ is the Legendre transform
of H̄.

So far we have discussed a homogeneous random walk because the
jump rate p(z) is independent of the position of the walk. More generally,
we may look at an inhomogeneous walk with the jump rate from a to
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a + z given by pa(z), where pa ∈ Γ0 for each a ∈ Zd. In other words, a
collection

ω = (pa(·) : a ∈ Zd) ∈ Ω = ΓZd

0

is given and for any such ω, we define a probability measure P aω on the
space of sequences x = (xn : n ∈ N) ∈ (Zd)N such that P aω(x0 = a) = 1,
and the law of xn+1 − xn conditioned on xn = b is given by pb.

Naturally, we would like to address the questions of LLN, CLT and
LDP for an inhomogeneous random walk, but these questions would
not have any reasonable answer unless some regularity or pattern is
assumed about the sequence ω ∈ Ω. The type of condition we assume in
this article is that ω itself is selected randomly and the inhomogeneity
is stochastically homogeneous. That is, the law of ω is stationary with
respect to the lattice translation. More precisely, we have a probability
measure (Ω,F ,P) with P invariant under the translation (τa : a ∈ Zd),
where τaω = (pa+b : b ∈ Zd), for ω = (pb : b ∈ Zd). We also assume
that P is ergodic in the sense that if a measurable set A ∈ F is invariant
under all translations, i.e., τaA = A, for all a ∈ Zd, then P(A) = 0 or

1. Of course, we put the product topology on Ω = ΓZd

0 with each Γ0

equipped with its standard topology. Also, F is the Borel σ-algebra of
Ω. We regard each ω ∈ Ω as a realization of an environment, and Pω is
the law of the corresponding random walk. We will be interested in two
types of questions for such a walk. As the first type, we will be interested
in the walk Pω for almost all realizations of ω with respect to P. The
probability measure Pω is called a quenched law and the corresponding
walk is referred to as a quenched walk. As the second type, we will be
interested in the averaged law,∫

Ω
Pω(dx)P(dω) =: P̂(dx),

which is known as the annealed law. Note that the quenched law is still
the law of a Markov chain and the main challenge for such a law comes
from its inhomogeneity. On the other hand, the annealed law is the law
of a highly non-Markovian walk as we will see in the proceeding sections.

It is convenient to write p0(ω, z) for the probability of jumping from
the origin to z, for a given ω = (pa(·) : a ∈ Zd) ∈ Ω. With such a
notation, the probability of jumping from a to a + z is now given by
p0(τaω, z). As a result, the corresponding walk Xn = Xω

n jumps to
Xn + z with probability p0(τXnω, z). Note that Xn is random for a
given realization of ω. Sometimes we write ω′ for the randomness of the
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walk so that Xn = Xω
n (ω′). These two layers of randomness makes the

analysis of such walks rather complex. Following an idea of Kozlov, it
is often useful to combine the two randomnesses into one by defining a
Markov chain on Ω with the following recipe: the state of chain at time
n is ωn = τXnω, where Xn is the walk associated with ω, which starts
from the origin. More precisely, if ωn = α, then α changes to τzα with
probability p0(α, z). With this idea, we have been able to produce a
Markov chain ωn which has all the information about the original chain
Xn. But, now the state space has changed from Zd to Ω, which is far
more complicated. The interpretation of ωn is that each time the walk
makes a new jump, we shift the environment so that the walker is always
at the origin. In other words, we are looking at the environment from
the current position of the walker. That is, we are taking the point of
view of the walker to study the environment.

Let us see how by taking the point of view of the walker we can
calculate the velocity of the walker. First, recall that if Zn = Xn−Xn−1,
then

E0
ωXn = E0

ω

n∑
j=1

Zn =
n∑
j=1

∑
z

zp0(τXjω, z)

=
n∑
j=1

∑
z

zp0(ωj , z).

Now, if Q is an ergodic invariant measure for the chain ωn, then for
Q-almost all ω,

(1.9) v̄ =
1

n
E0
ωXn →

∫ ∑
z

zp0(ω, z)Q(dω).

This suggests studying the invariant measures for the chain ωn. Once
these invariant measures are known, then the velocity v̄ for the walker
can be evaluated by (1.9). As we will see later, studying the invariant
measures for ωn is a formidable task. For example, it is not known in
general whether or not there is an invariant measure which is absolutely
continuous with respect to P. If such an invariant measure exists, then
by a result of Kozlov, we also have P� Q and Q is the unique invariant
measure. This question is rather well-understood when d = 1 and only
nearest neighbor jumps are allowed. We will discuss this in Section 2.

We end this introduction with an overview of some of the known
results and an outline of the rest of the paper.
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The quenched LDP in the case of d = 1 with nearest-neighbor jumps
and independent environment was established by Greven and den Hol-
lander [3]. Section 2 and 3 are devoted to LLN and LDP for this case.
The extension to the general environment was achieved by Comets, Gan-
tert and Zeitouni [2]. The first quenched LDP in d ≥ 2 for independent
environment was carried out by Zerner [8] provided that the nestling
condition is satisfied, i.e., the convex hull of the support of the law∑

z zp0(ω, z) contains the origin. In Section 3, we discuss a formula
of Rosenbluth [R] for the quenched LDP rate function. Varadhan [6]
proved quenched LDP for general stationary ergodic environment in all
dimensions. He also established the quenched LDP for an independent
environment under some ellipticity conditions. Section 5 is devoted to
Varadhan’s treatment of anealed LDP.

2. RWRE in dimension 1 with nearest neighbor jumps, LLN

In this section, we study RWRE when the dimension is one and only
the jumps to the adjacent sites are allowed. As it turns out, many of
the questions we discussed in Section 1 have been settled successfully in
this case. However, many of the arguments used to treat this case are
not applicable for the general RWRE.

In spite of significant simplification, it is instructive to understand
the case of nearest neighbor RWRE in dimension one first and use it
as a model to compare with when we discuss the general case in the
proceeding sections.

Because of nearest neighbor jumps, we only need to know p0(ω, 1)
because p0(ω,−1) = 1 − p0(ω, 1) and p0(ω, z) = 0, for z 6= 1,−1. Let
us simply write ω) for p0(ω, 1) and observe that the associated walk Xn

jumps to Xn+1 with probability q(τXnω) and to Xn−1 with probability
1− q(τXnω). The corresponding chain evolves by a simple rule: ωn+1 =
T (ωn) with probability q(ωn) and ωn+1 = T−1(ωn) with probability
1− q(ωn), where T = τ1. The following theorem is due to Alili [1].

Theorem 2.1. If
∫

log 1−q
q dP 6= 0, then the chain ωn has an invariant

measure Q, which is absolutely continuous with respect to P.

We will give a proof of Theorem 2.1 shortly and in the process we find
an explicit formula for the invariant measure Q. However, Q would not
be a probability measure unless we make a more stringent assumption.
Also, using Q we find an explicit expression for the average velocity v̄.
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In the case of an independent environment,

(2.1) v̄ =


1−γ̄
1+γ̄ if γ̄ =

∫ 1−q
q dP < 1,

η̄−1
η̄+1 if η̄ =

∫ q
1−qdP < 1,

0 otherwise.

The formula (2.1) is due to Solomon [5], who proved LLN for RWRE
when in addition the environment consists of independent jump proba-
bilities.

Proof of Theorem 2.1. If Q is invariant, then

(2.2)

∫
[q(ω)J(T (ω)) + (1− q(ω))J(T−1(ω))]Q(dω) =

∫
JdQ

for every measurable bounded function J . If dQ = ρdP, then (2.2) is
equivalent to

(2.3) q(T−1(ω))ρ(T−1(ω)) + (1− q(T (ω)))ρ(T (ω)) = ρ(ω).

So, the question is whether (2.3) has a solution for a probability density
ρ. In some sense, (2.3) is a “second order equation” because it involves
both T and T−1. In fact, if we set η = q

1−q and R = (1− q)ρ, then (2.3)
says

(2.4) R ◦ T 2 −
(

1

1− q
R

)
◦ T + ηR = 0.

We now define the “first order” operator AR = R◦T −ηR to write (2.4)
as

(2.5) (AR) ◦ T −AR = 0.

Since P is T -ergodic, the only solution of (2.5) is AR ≡ c, for a constant
c. We now have to solve the first order equation

(2.6) R ◦ T − ηR ≡ c.

It is not hard to show that if c = 0, then the only solution to (2.6) is
R = 0. For a nontrivial solution, we need to consider the case c 6= 0.
For such c, we only need to solve (2.6) for one choice of c; for any other
choice, we multipy R by a suitable constant. We may consider the choice
c = −1, so that the equation (2.6) reads asR = γ(R◦T+1) with γ = 1−q

q .
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To find a solution, start from some R0 and define Rn+1 = γ(Rn ◦T + 1),
which means that

Rn =

n−1∑
j=0

j∏
r=0

γ ◦ T r +

(
n−1∏
r=0

γ ◦ T r
)
R0 ◦ Tn.

From this we guess that

R =
∞∑
j=0

j∏
r=0

γ ◦ T r

is a solution. As a result,

(2.7) ρ = ρ+ = (1 + γ)

∞∑
j=1

j∏
r=1

γ ◦ T r.

But, now we have to make sure that the right-hand side of (2.7) is

convergent. For this, we need the condition
∫

log 1−q
q dP =: ζ < 0. This

is because

1

j
log

j∏
1

γ ◦ T r =
1

j

j∑
1

log γ ◦ T r → ζ

P-almost surely, by Birkhoff’s ergodic theorem. This implies an expo-
nential decay for the jth term of the right-hand side of (2.7).

If, instead, ζ > 0, in the above argument we replace the role of T with
T−1. This time,

ρ = ρ− = (1 + η)
∞∑
j=1

j∏
r=1

η ◦ T−r

is a solution. �

Note that the invariant measure we constructed in Theorem 2.1 is
not necessarily a finite measure. However, if

∫
ρ−dP or

∫
ρ+dP is finite,

then we can turn it into a probability density by setting ρ̂± = 1
Z± ρ

±,

with Z± =
∫
ρ±dP. In the case of independent environment, Z± can be

calculated explicitly. For example, if γ̄ =
∫
γdP < 1, then

Z+ = (1 + γ̄)

∞∑
1

γ̄j = γ̄
1 + γ̄

1− γ̄
,
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and

v̄ =
1

Z+

∫
(2q − 1)ρ+dP =

1

Z+

∫
1− γ
1 + γ

ρ+dP

=
1− γ̄
Z+

∞∑
1

γ̄j =
1− γ̄
1 + γ̄

> 0,

as we claimed earlier in (2.1). Similarly, if η̄ =
∫
ηdP < 1, then

v̄ = η̄−1
η̄+1 < 0. In the remaining cases,

1

η̄
=

(∫
γ−1dP

)−1

≤ 1 ≤
∫
γdP,

and the velocity is 0 as was shown by Solomon.

3. RWRE in dimension 1 with nearest neighbor jumps, LDP

Based on our discussion in Section 1, the LDP for RWRE comes in
two flavors, quenched and annealed. The former is stated as

(3.1) lim
n→∞

1

n
u([xn], [tn];ω) = sup

v
(f(x+ vt)− tL̄(v)),

for almost all P− ω realizations, where,

(3.2) u(a, n;ω) = logEaω exp

(
nf

(
1

n
Xn

))
.

The latter means

(3.3) lim
n→∞

1

n
logE exp(u([xn], [tn];ω)) = sup

v
(f(x+ vt)− tL̂(v)).

In some sense, the quenched LDP is really an LDP for Pω but an LLN
for the ω-variable. On the other hand, the annealed LDP is an LDP for
the annealed law

∫
PωP(dw) = P̂, because the left-hand side of (3.3)

equals

lim
n→∞

1

n
log Ê exp

(
nf

(
1

n
Xn

))
.

There is yet another interpretation for both (3.1) and (3.2). If we denote
the right-hand side of (3.1) by ū(x, t), then again,

(3.4)

{
ūt = H̄(ūx),

ū(x, 0) = f(x),

where H̄ is the Legendre transform of L̄. In some sense, u(a, n;ω) solve
a discrete Hamilton–Jacobi–Bellman equation and (3.2) can be recast
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as a homogenization problem for such equation. To explain this further,
define an operator H(·;ω) : L(Zd)→ L(Zd),

(3.5)

H(f ;ω)(a) = logEaω exp(f(X1)− f(X0))

= log
∑
z

exp(f(a+ z)− f(a))p0(τaω, z),

where L(Zd) consists of functions f : Zd → R. Then u, solves

u(a, n+ 1;ω)− u(a, n;ω) = H(u(·, n;ω);ω).

Now, (3.1) says that a homogenization occurs, i.e.,
1
nu([xn], [tn];ω)→ ū(x, t), as n→∞, with ū, independent of ω, solving
the homogeneous Hamilton–Jacobi equation (3.4). An LDP for this
homogenization requires a calculation of the sort

lim
n→∞

1

n
logE exp(λu([xn], [tn];ω)),

for every λ ∈ R. This for λ = 1 is the annealed LDP (3.2).
In the case of d = 1 with nearest neighbor jumps both the quenched

and the annealed LDP were established in Comets et al. [CGZ]. For the
rest of this section, we offer an alternative approach to understanding
the quenched LDP, which, in spirit, is very close to the recent work of
Yilmaz [Y]. Our presentation of quenched LDP would hopefully help
the reader to appreciate Rosenbluth’s formula for the quenched LD rate
function that will be discussed in Section 4.

Recall that in the homogeneous random walk, we observed that if
f(x) = x · P , then correspondingly,

u(a, n) = logEa exp(P ·Xn) = nH̄(P ) + P · a.

This ultimately has to do with the fact that ū(x, t) = x · P + tH̄(P )
solves the HJ equation (1.7).

In the case of the inhomogeneous random walk, we may wonder
whether or not a suitable function would play the role of x · P . In
this case, we need to add a corrector to the linear function x · P . More
precisely, we search for a function F (x, ω;P ) such that its discrete de-
rivative is of the form

(3.6) F (x+ z, ω;P )− F (x, ω;P ) = z · P + g(τxω, z;P ),

asymptotically,

(3.7)
1

n
F ([xn], ω;P ) = x · P + o(1),
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as n→∞, and

(3.8) H(F (·, ω;P );ω) ≡ H̄(P ).

In other words, once a function F with (3.7) and (3.8) is found such that
H(F (·, ω;P );ω) is a constant, then the constant is the number H̄(P ) we
are looking for. Indeed, for such a function F we have that

u(a, n, ω;P ) := logEa exp(F (Xn, ω;P )) = F (a, ω;P ) + nH̄(P ),

and

lim
n→∞

1

n
u([xn], [tn], ω;P ) = x · P + tH̄(P ).

Such functions F (·, ω;P ) can be constructed explicitly in the case of
d = 1 with nearest neighbor jumps. To see this, observe that we want
to find g(ω, 1) and g(ω,−1) such that

(3.9) q(ω)eg(ω,1)+P + (1− q(ω))eg(ω,−1)−P = eH̄(P ),

by (3.8). But, we need to solve (3.6) for F once g is determined. This
forces a compatibility condition on g; we must have

g(ω, 1;P ) + g(τ1ω,−1;P ) = 0.

If we write g(ω), for g(ω, 1;P ), then

g(τ−1ω,−1;P ) = −g(τ−1ω) = −g(T−1(ω)).

So, (3.9) becomes

(3.10) q(ω)eg(ω)+P + (1− q(ω))e−g(T
−1(ω))−P = eH̄(P ).

In fact, the function F (x, ω;P ) is simply given by

F (x, ω;P ) = x · P +

x−1∑
j=0

g(τjω),

for x a positive integer. Now, (3.7) is satisfied if Eg = 0. This suggests
setting h = g + P so that (3.10) now reads

(3.11) q(ω)eh(ω) + (1− q(ω))e−h(T−1(ω)) = λ,

with λ = eH̄(P ) and P = Eh. So, we want to find functions h(ω) such

that λ = qeh + (1 − q)e−h◦T−1
is a constant and once this is achieved,

we set H̄(P ) = log λ, for P = Eh, so that Eh is H̄−1(log λ). Indeed, if
we set σl = inf{k : Xk = l} and

h(ω) = − logE0
ωe

rσ111(σ1 <∞),
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then (3.11) is satisfied for H̄(P ) = −r, and the corresponding P is

−P−(r) = P = −E logE0
ωe

rσ111(σ1 <∞).

Note, however, that h(ω) = ∞ if r is too large. In fact, there exists a
critical r−c > 0 such that h(ω) <∞ if and only if r ≤ r−c .
We set P−c = P (rc). In summary, for P ∈ [−P−c , 0], we have that
H̄(P ) = −r−(P ),

where r−(P ) is the inverse of −P−(r).
If

h′(ω) = logE0
ωe

rσ−111(σ−1 <∞),

then

q(ω)eh
′(T (ω)) + (1− q(ω))e−h

′(ω) = e−r

and h(ω) = h′ ◦ T satisfies

q(ω)eh(ω) + (1− q(ω))e−h(T−1(ω)) = eH̄(P ),

where H̄(P ) = r and

P+(r) = P = E logE0
ωe

rσ−111(σ−1 <∞).

4. Quenched LDP

In the case of d = 1 with nearest neighbor jumps, we were able to
solve (3.8) for a function F satisfying (3.6) and (3.7). It seems unlikely
that such a solution can be found in general. Instead, we replace (3.8)
with

(4.1) H(F (·, ω);ω) ≤ constant

and try to optimize the outcome. First, we try to formulate (3.6) more
carefully. We define a set of functions g for which (3.6) has a solution for
F . That is, the set of gradient-type functions. Since we will be dealing
with the limit points of gradient-type functions, perhaps we should look
at those functions with the 0 curl. More precisely, let F0 denote the
set of functions g : Ω → R such that Eg = 0, and for any loop x0 =
x, x1, x2, . . . , xk−1, xk = x, we have

g(τx0ω, x1 − x0) + g(τx1ω, x2 − x1) + · · ·+ g(τxn−1ω, xn − xn−1) = 0.

Note that the constant in (4.1) can be chosen to be esssupωH(F (·, ω);ω).
Here is the Rosenbluth’s formula for H̄:

(4.2) H̄(P ) = inf
g∈F0

esssup
ω

log
∑
z

exp(z · P + g(ω, z))p0(ω, z),
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where the essential supremum is taken with respect to P. The formula
(4.2) was derived by Rosenbluth [4] under the assumption that for some
α > 0, ∫

| log p0(ω, z)|d+αdP <∞.

The way to think about F is that F is the space of closed 1-forms.
In fact, the space of 1-form is defined by

F1(Ω) = {f = (f(ω, z) : z ∈ R0) : f(·, z) : Ω→ R
is bounded measurable for each z ∈ R0},

where R0 ⊆ Zd is chosen so that if z /∈ R0, then p0(ω, z) = 0. Now, for
1-form f , we define

H(f) = log
∑
z

ef(ω,z)p0(ω, z).

If L(Ω) is the space of bounded measurable functions, then
H : F1 → L(Ω). Recall that F0 is the set of closed 1-form of 0 average.
Note that the space F1 contains constant 1-forms,

eP = (P · z : z ∈ R0).

Now, we say two 1-forms f and f ′ are equivalent if f − f ′ ∈ F0. We can
now write

H̄(P ) = inf
f∼eP

esssup
ω
H(f),

where the essential supremum is taken with respect to P. More generally,
for every 1-form f , define

H̄(f) = inf
f ′∼f

esssup
ω
H(f ′).

We have the following generalization of (3.1): For every 1-form f ,

(4.3) lim
n→∞

1

n
logE0

ω exp

n−1∑
j=0

f(τXjω,Xj+1 −Xj)

 = H̄(f).

This formula was established by Yilmaz [7]. Note that if f = eP , then
H̄(eP ) = H̄(P ) = supv(P · v − L̄(v)), which is what we get by (3.1)

because in this case,
∑n−1

j=0 f(τXjω,Xj+1 −Xj) = P ·Xn.
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5. Annealed LDP

We now turn to the annealed large deviations for an RWRE. Recall
that the quenched LDP is really an LDP for Pω and an LLN for the
ω variable. That is why we have a quenched LDP under a rather mild
condition on the environment measure P. For anneald LDP, however, we
need to select a tractable law for the environment beacuse we are seeking
for an LDP for the annealed law P̂. Pick a probability measure β on the

set Γ0 and set P to be the product of β to obtain a law on Ω = ΓZd

0 .

The annealed measure P̂ =
∫
Pω P(dω) has a simple description. Let us

write Z(n) = X(n+ 1)−X(n) for the jump the walk performs at time
n. We certainly have

Pω(X(1) = x1, . . . , X(n) = xn) =
∏

z,x∈Zd

px(z)Nx,z(n),

where ω = (px : a ∈ Zd) and

Nx,z(n) = #{i ∈ {0, 1, . . . , n− 1} : xi = x, xi+1 − xi = z}.

Hence

P̂(X(1) = x1, . . . , X(n) = xn) =
∏
x∈Zd

∫ ∏
z

p(z)Nx,z(n)β(dp).

Evidently, P̂ is the law of a non-Markovian walk in Zd. Varadhan in
[V] establishes the annealed large deviations principle under a suitable
ellipticity condition on β. The method relies on the fact that the environ-
ment seen from the walker is a Markov process for which the Donsker–
Varadhan Theory may apply if we have enough control on the transition
probabilities. If we set

Wn = (0−X(n), X(1)−X(n), . . . , X(n− 1)−X(n), X(n)−X(n))

= (s−n, . . . , s−1, s0 = 0),

for the chain seen from the location X(n), then we obtain a walk of
length n that ends at 0. The space of such walks is denoted by Wn.
Under the law P̂, the sequence W1,W2, . . . is a Markov chain with the
following rule:
(5.1)

P̂(Wn+1 = TzWn |Wn) =
P̂(TzWn)

P̂(Wn)
=

∫
Γ0
p(z)

∏
a p(a)N0,aβ(dp)∫

Γ0

∏
a p(a)N0,aβ(dp)

,
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where N0,a = N0,a(Wn) is the number of jumps of size a from 0 for the
walk Wn. Here, TzWn denotes a walk of size n+ 1, which is formed by
translating the walk Wn by −z so that it ends at −z, instead of 0, and
then making the new jump of size z so that it ends at 0. We wish to
establish a large deviation principle for the Markov chain with transition
probability q(W, z), given by (5.1), where W = Wn ∈

⋃∞
m=0 Wm and z

is the jump size. We assume that with probability one, the support of
p0(·) is contained in the set D = {z : |z| ≤ C0}. Naturally, q extends
to those infinite walks W ∈ W∞, with N0,a < ∞ for every a ∈ D.
If we let Wtr

∞ denote the set of transient walks, then the expression
q(W, z) = q(W,TzW ), given by (5.1), defines the transition probability
for a Markov chain in Wtr

∞. The Donsker–Varadhan Theory suggests
that the empirical measure

1

n

n−1∑
m=0

δWn

satisfies a large deviation principle with a rate function

I(µ) =

∫
Wtr
∞

qµ(W, z) log
qµ(W, z)

q(W, z)
µ(dW ),

where µ is any T -invariant measure on Wtr
∞ and qµ(W, z) is the condi-

tional probability of a jump of size z, given the past history. We then
use the contraction principle to come up with a candidate for the large
deviation rate function

Ĥ(v) = inf

{
I(µ) :

∫
z0µ(dW ) = v

}
,

where z0 denotes the jump of a walk W from the origin. Even though
we have been able to state our problem as an LDP for a Markov chain,
many difficulties may arise because the state space is rather large and the
transition probabilities are not continuous with respect to any natural
topology we may choose. We refer the reader to [6] as how these issues
are handeled.
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