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COMPACT COMPOSITION OPERATORS ON CERTAIN
ANALYTIC LIPSCHITZ SPACES

H. MAHYAR® AND A. H. SANATPOUR

Communicated by Mohammad Sal Moslehian

ABSTRACT. We investigate compact composition operators on cer-
atin Lipschitz spaces of analytic functions on the closed unit disc
of the plane. Our approach also leads to some results about com-
position operators on Zygmund type spaces.

1. Introduction

Let A and B be Banach spaces of analytic functions on the plane set
X. For a selfmap ¢ of X and a complex-valued mapping ¥ on X, the
weighted composition operator YCy : A — B is the operator given by
(WCyf)(2) = ¥ (2) f(p(2)) for all z € X and f € A. In the special
case of ¢ = 1 we get the composition operator (Cyf) (2) = f(¢(2)).
There has been growing interest in the study of (weighted) composition
operators between Banach spaces of analytic functions. Boundedness
and compactness of composition operators on Bloch spaces (see Section
2 for the definition) were first studied by Roan [13] and later by Madigan
[9, 10] and Matheson [10]. Moreover, Ohno, Stroethoff and Zhao studied
weighted composition operators between Bloch type spaces in [12]. The
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compactness of composition operators on certain Banach algebras of

analytic and differentiable Lipschitz functions was investigated in [1].
For a bounded plane set X and 0 < o < 1, the Lipschitz algebra of

order o, Lip(X, ), is the algebra of all complex-valued functions f on

X for which
Pa,x(f) = SHP{W cz,w € X and z # w} < 00.
zZ—w
These Lipschitz algebras were first studied by Sherbert [14, 15]. The

algebra Lip(X, ) is a Banach function algebra when equipped with the
norm

IflLipxe) = Ifllx +pax(f)  (f € Lip(X, @),
where || f]lx = sup £ (2)].

Let X be a compact plane set with nonempty interior and A(X) the
Banach function algebra of all continuous complex-valued functions on
X which are analytic on intX. For 0 < o < 1, define

Lips(X,a) = Lip(X,a) N A(X).

Then the analytic Lipschitz algebra (Lipa(X, @), ||| ip(x,a)) is @ Banach
function algebra on X.

A complex-valued function f on a perfect plane set X is called differ-
entiable if at each point zg € X, the limit

feo) = i T

exists. Let X be a perfect bounded plane set, n € N, and 0 < a < 1.
The algebra of all complex-valued functions f on X whose derivatives up
to order n exist and f*) € Lip(X, a) for each k (0 < k < n), is denoted
by Lip™(X, «). These differentiable Lipschitz algebras were first studied
in [7, 11]. The algebra Lip"(X,a) (n € N, 0 < a < 1) with the norm

Y ) (k)
||f||n,a:ZHf”#X“) lef HX-Fan(f )

k=0
is a normed function algebra on X Wthh is not necessarily complete.
However, for the closed unit disc D, the algebra Lip"(D, a) is a Banach
function algebra on D.
Let ¢ be a selfmap of D. In [1], it was proved that ¢(D) C D is a
sufficient condition for the compactness of the composition operator Cy
on Lipa(D, a) and on Lip"(D,«) when 0 < o < 1. It was also proved
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that this condition is necessity when o = 1 and it was conjectured that
the same result is true in the case 0 < a < 1. Later in [2], these re-
sults were extended to more general compact plane sets X. In Section
2, using a different approach from the one given in [1], we show that the
condition ¢(D) C D is a necessary condition for the compactness of the
composition operator Cy, on Lipa(D, ) in the case 0 < a < 1. Indeed,
we modify the problem of compactness of a composition operator Cy on
Lipa(D, @) to an equivalent problem, i.e. compactness of a composition
operator C, on a Bloch type space for suitable choice of ¢ : D — D.
Thus, we consider the analytic Lipschitz algebra Lips(D,a) as a Ba-
nach function space on D. In Section 3, we show that the condition
#(D) C D is also a necessary condition for the compactness of the com-
position operator Cy, on Lip"(D,a) in the case 0 < a < 1. Indeed, we
invoke to this problem by applying Julia-Caratheodory Theorem to an
equivalent problem, i.e. compactness of a weighted composition opera-
tor on a Bloch type space. Our approach also yields some new results
about composition operators on Zygmund type spaces (see Section 3
for the definition). We also consider the differentiable Lipschitz algebra

Lip™(D, a) as a Banach function space on D.

2. The analytic Lipschitz space Lip (D, «)

Let H(ID) be the space of all analytic functions on the open unit disc
D. For 0 < v < 00, we denote by B* the Bloch type space of all functions
f € H(D) satisfying

sup (1 - [2])7 [ £(2)] < oc.
zeD

The space B* is a Banach space when equipped with the norm

£l e = [£(O)] + 21615(1 — D[] (feBY).

In the case o = 1 we have the classical Bloch space B = B! (see [16]).
By [16, Theorem 7.9], for each 0 < a < 1 the space B~ can be iden-
tified with the analytic Lipschitz space HA,(D) := H(D) N Lip(D, «),
which is a closed subspace of (Lip(D, ), ||| 1;pp,q))- Since the norm
topologies on B~ and HA, (D) are stronger than compact-open topol-
ogy, the Closed Graph Theorem implies that the norms || - ||gi-« and
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I | Lip(p,a) are equivalent on HA,(D) = B'~%, that is
(2.1) Cillfllgr-o < I1flLipma) < Collflse  (f € HAD) = B,

for some constants C7,Co > 0. Using this, we show that the spaces
Lips(D, o) and B!~ are isomorphic. Note first that every f € Lip(D, a)
has a unique continuous extension F to D. To see this, consider any
sequence (z,) in D converging to zgp € ID. Since f € Lip(D,«) the
sequence (f(zy)) is a Cauchy and hence is a convergent sequence. Define
F(z9) = limp 00 f(2n), then F is well-defined and it is the unique
continuous extension of f.

Proposition 2.1. Let 0 < a < 1. Then F € Lipa(D, ) if and only if
f=Flp € B¢, or equivalently, f belongs to Bl_ﬁ if and only if F,
the continuous extension of f to D belongs to Lipa(D, ). Moreover,

CleHBl—a < ”FHLlp(ﬁ,a) < C2||f||81—(¥ (f c Bl—az)7

where C and Cy are the constants described in (2.1).

Proof. If F € Lipa(D,a) then clearly f = Flp € HA,(D) = B
and Hf||Li,p(D7a) < ||F\|Ll.p®7a). Hence, by (2.1) we have Ci]|f||gi-a <
| F| Lip(D,a)> Which implies that the restriction operator

(2.2) R: Lipa(D,a) = B~ R(F)=F|p,

is well-defined and bounded with ||R| < C%

Now, let f € Elfo‘ and let F' be the continuous extension of f to D.
For each z,w € D, let (z,) and (w,) be sequences in D with z, — z and
Wy, — w as n — 0o. Then

IF(z) = Pw)] = lim |f(0) — £y
< pa,]D)(f) nlglolo |20 — wn|®
= pa,n(f) [z —w|*.

Consequently, F' € Lip(D, ) and pa’ﬁ(F) < pa,p(f). On the other hand,
since F|p = f € H(D), we have F € A(D). Hence F € Lipa(D,a) and
also [|Fllg = [|Fllp = [[fllp- Therefore, |F|l,;,5.q) < [fllLipm,a) and
by (2.1) we get [|Fl|;,5,4) < C2ll fllgi-a- This completes the proof and
also shows that the extension operator

(2.3) E:B'"™ = Lipa(D,a) E(f)=F,
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is well-defined and bounded with ||E|| < Cs. O

Remark 2.2. It is worth mentioning that in the proof of Proposition
2.1, in order to show that E(f) € Lip(D, ) one could also use the fact
that E(f) € Lip(0D, &) (by [16, Theorem 7.9] and [5, Theorem 5.1]) and

hence, by [6, Lemma 4], E(f) € Lip(D, «).

Let Cy : Lipa(D,a) — Lipa(D, ) be a composition operator in-
duced by the non-constant selfmap ¢ : D — . Consider the selfmap
¢ = R(¢p) = ¢|p : D — D. Then ¢ induces a composition opera-
tor Cy, : BY™® — B17® To see this, let f € B'™® Then E(f) €
Lipa(D, ) and hence E(f) o ¢ € Lipa(D,a). Consequently, fop =
R(E(f) o ¢) € B, Conversely, if ¢ induces the composition operator
Cy : B™* — B=* then ¢ = E(p) : D — D induces the composition
operator Cy : Lipa(D, ) — Lipa(D, «). This follows from the fact that
if F € Lipa(D, ), then R(F) o ¢ € B'=® and hence, by the uniqueness
of the continuous extension we have Fo¢ = E (R(F) o ¢) € Lipa(D, a).

Theorem 2.3. Let 0 < o < 1 and let Cy : Lipa(D, ) — Lipa(D, )
be a composition operator induced by the non-constant selfmap ¢ : D—
D. Let ¢ denote the restriction of ¢ to D. Then Cy : Lipa(D, ) —

Lipa(D, ) is compact if and only if Cy : B~ — B~ is compact.

Proof. Let R and F denote the restriction and the extension operators
described in (2.2) and (2.3), and note that by the discussion right before
this theorem, we have

(2.4) Cp=EoC,oR and C,=RoCyoFE.

By the same argument as in the proof of Proposition 2.1, the operators
R : Lipa(D,a) — B and E : B'™* — Lipa(D,a) are bounded.
Therefore, by (2.4), C, : B=* — B= is compact if and only if Cy :
Lipa(D, ) — Lipa(D, a) is compact. O

For the rest of this paper, we need the following important theorem
proved by MacCluer and Zhao in [8] for weighted composition operators
on the Bloch type spaces.
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Theorem 2.4. [8, Theorem 5] Let 0 < a < 1, ¢ € 9D and u,p € H(D),
where ¢ is a selfmap of D. If uCy, : B* — B* is compact, then u(¢) =0
whenever lim,_,1- ¢(r() exists and has modulus 1.

For 0 < o < 1, consider the composition operator Cy : Lipa(D, o) —
Lipa(D, a) induced by the non-constant selfmap ¢ : D — D. It was
proved in [1, Theorem 3.3] that Cy is compact provided that ¢(D) C D.
It was also shown that for @ = 1, this condition is necessary. Here we
will prove that the same condition is necessary for 0 < o < 1.

Theorem 2.5. Let 0 < a <1 and let Cy : Lipa(D, o) — Lipa(D, o) be

a composition operator induced by the non-constant selfmap ¢ : D — D.
Then Cy is compact if and only if (D) C D.

Proof. We only need to show that ¢(D) C D whenever C is compact and
0 < a < 1. By Theorem 2.3, if Cy : Lipa(D, ) — Lipa(D, a) is compact
then C, is a compact operator on B'=% (0 < a < 1). Now, by contrary
let ¢(¢) = n € 9D for some ¢ € ID. Then [lim,_,;- ¢(r()| = |n| = 1.
Therefore, Theorem 2.4 leads to a contradiction and completes the proof
of the theorem. O

3. The differentiable Lipschitz space Lip"(D, a)

The Zygmund space Z is the class of all functions f € H(D) N C (D)

with
i(0+h) i(0—h)y _ i
“up [/ (@) + £ () —2f ()]
ecom h
h>0

By [5, Theorem 5.3], an analytic function f belongs to Z if and only if
[ € B, or equivalently sup,cp (1 —|z]) [f"(2)] < co. For 0 < a < o0
we denote by Z% the Zygmund type space of those functions f € H(D)
satisfying

sup (1 2])* | £/(2)] < o0

z€D

The space Z° is a Banach space with the norm

1£llze = I£(O)] + [ £'(0)] +§1elg(1 — D) (fez).
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Boundedness of composition operators on Z was first studied by Choe,
Koo and Smith in [4].

Now, in general, for each n € N and 0 < a < oo we define the space
Z2 of those functions f € H(D) satisfying

sup (1 - |2))* | /()| < oo.
zeD
The space Z% is a Banach space when equipped with the norm

1125 = O]+ |7©)] + -+ [ £ (©)] + sup (1 |2])*
zeD

)|

Note that for a differentiable function F on D, we have R(F') =
R(F)', where R is the restriction operator R(F) = F'|p. We also have
F € Lip"(D,a) if and only if F™ € Lips(D,«). Hence, for n € N
and 0 < a < 1, if F € Lip™(D, a) then by Proposition 2.1, R(F)" =
R(F™) € B'=®. This shows that the restriction operator

(3.1) R: Lip"(D,a) = 2™ R(F)=Flp,

is well-defined. This operator is also bounded with || R|| < n!max{1, C%}
Note also that if Cy : Lip"(D,a) — Lip"(D, ) (0 < o < 1) is a com-
position operator induced by the non-constant selfmap ¢ : D — D, then
¢ = R(¢) = ¢p : D — D induces the composition operator C,
Zl-a 4 zl=a T see this, let f € Z1= and note that " e B'=2.
Hence by Proposition 2.1, F,, := E(f™) € Lipa(D, a). Define

Foi(2) = /0 " Fa(Q)de + fD(0) = /0 " E(F™) () + F7D(0),

for z € D. Tt follows that F!_, = F,, = E(f™) € Lipa(D, «) and hence
F,_1 € Lip"(D, &). On the other hand, R(F,_;) = f™1) which implies
that f(*=1 € HA,(D). Also F,_1 = E(fY), because f(*~1 has a
unique continuous extension to D. Setting

F<z>:—/oz L(Q)dC + £(0) /E QOdC+ £(0) (= €D),

it yields F € Lip®(D, a), F = E(f) and F™ = F,, = E(f™). Moreover,
R(F®)Y) = R(Fy) = f® and E(f®) = F, = F® = E(f)® for each
0 < k < n. Since ¢ induces the composition operator Cy on Lip" (D, a),
we have F o ¢ € Lip"(D,a) or equivalently (F o ¢)™ € Lipa(D, ).
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Therefore, Proposition 2.1 implies that
(foQ) = (RFog)" = R((Fos)™) e 5,

meaning that f o ¢ € Z!7% so ¢ induces the composition operator
C,: 2o 5 Zl-a

Conversely, if ¢ : D — D induces a composition operator C,, : Zlma
Zl=a then ¢ = FE(p) : D — D induces the composition operator
Cy : Lip"(D,a) — Lip"(D,«). To see this, let FF € Lip"(D, ). As
mentioned, F o ¢ € Lip"(D,a) if and only if (F o $) € Lipa(D, ).
According to Proposition 2.1, this is equivalent to

(R(F) 0 )™ = (R(F 0 9))™ = R ((Fog)™) € B,

On the other hand, since ¢ induces the composition operator C, :
zZl-a 5 zl=a and R(F) € Z17, we have R(F) o € 217, or equiva-
lently, (R(F) o gp)(n) € B'=. Hence, ¢ : D — D induces the composition
operator Cy : Lip"(D, ) — Lip"(D, ). O

Lemma 3.1. Letn € N and 0 < o < 1. Then there exists a constant
C > 0 such that

l9“ o < Cllgllzg,
forallge Z% and 0 < 4 < n.

Proof. Let g € Z7%. Using the Fundamental Theorem of Calculus we
have

90 = [ Qi +d20) (= <),
for each 0 < ¢ < n — 1, which implies that
(3.2) 19 llo < 19"l + 19'9(0)1.
Hence, by applying (n — £)-times (3.2), we have
33) 199 < 19O+ gD O] + - + 19" O)] + 9™ |Ip-
On the other hand, ¢(™ € B*. So, by Proposition 2.1 we get
34 g o < IEG™) 5 < 1EG™) Lip5a—a) < Colld™ e
Now, applying (3.3) and (3.4), it follows that

19 lp < max{1, Co}llgll g,
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forall0 < /¢ <n. O

Theorem 3.2. Let 0 < a < 1, n € N and let Cy : Lip"(D,a) —
Lip™"(D, a) be a composition operator induced by the selfmap ¢ : D —
D. Let ¢ denote the restriction of ¢ to D. Then Cy : Lip"(D,a) —
Lip"(D, ) is compact if and only if Cy : Z17* — Z1=% s compact.

Proof. Let R denote the restriction operator R : Lip™(D, al — Zl-e
described in (3.1). Consider the operator T : Z}=® — Lip"(D, ) given
by

(35  T()) = /O CE(F)QC+ £(0) (f € 2,z € D).

Note that by the discussion before Lemma 3.1, the operator T is
well-defined and R o T = id. We now show that T is bounded. Let
(fm) C 217 with f,, — f in 2} and T(f,,) — ¢ in Lip"(D, ). By
Lemma 3.1, we have

(3.6) IT(fm) —T(f)|lp — 0 asn— oo.

On the other hand, [|T'(fmn) — gllg < |1T(fm) — 9llna — 0 as n — oo.
This along with (3.6) implies that 7'(f) = g on D and hence, T'(f) = g
on D. Thus, by the Closed Graph Theorem, the operator 7" is bounded.

Considering the bounded operators R : Lip"(D,a) — Z17% and T :
zl=@ — Lip"(D,«), we have C,, = RoCyoT and Cy = T o Cy, o0 R.
Therefore the compactness of Cy : Lip"(D, o) — Lip"(D, ) and C,, :
Zl=a 5 Zl=a are equivalent. O

In order to state the main results of this section, we need a few prelim-
inary lemmas. In what follows, set Lip’(D, ) = Lipa(D, ) and denote
by Z§ the Bloch type space B“.

Lemma 3.3. Let 0 < a < 1 and let k,n be two nonnegative integers.
Let o : D — D bein Z3 5. Then P = Py Z — Z7 given by

o(2)
P()(2) = ¢ (2)¢"(2) /0 FOdC (fe 28 zeD),

18 a compact operator.
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Proof. First we show that P is well-defined. To see this, let f € Z7.
Then by Lemma 3.1 there exists a constant C' > 0 such that

(3.7) 1fp < C|lflze (0<j<n),
and
(38) l¢@llp < Cllgllzg,, (0<i<n+2)

On the other hand, considering the bounded extension operator 1" given
in (3.5), one can see that the extension T(y) of ¢ to D belongs to
Lip"*2(D, 1 — ), because ¢ € Z¢ 9. Hence, by the discussion before
Lemma 3.1, T(0®) = T(p)® € Lips(D,1 — a) for each 0 <i < n+ 2.
Therefore, by Proposition 2.1, ¢(© € B or equivalently,

(3.9) sup(1 — |22)?|e ) (2) < 00 (0<i<n+2).
zeD

Now, consider

IP(lzg = [P(HD )]+ sup(1 — [2f2)°
1=0

zeD

P ()

(@)

" (2)
-3 (so%z)%"(z) I f(C)dC>

1=0 2=0
2) (n+1)
(3.10) + sup(1 — [z[*)” <<P’(2)’“<P”(Z) fp f(C)d<> :
z€D 0

and note that the terms in (3.10) are all dominated by the terms of the
type (3.7), (3.8) and (3.9). This implies that (3.10) is bounded. Thus,
P(f) € Z% and P is well-defined.

To see the compactness of P, let (f,,) be a bounded sequence in Z¢.
It follows from boundedness of the extension operator T', given in (3.5),
that (T(f,,)) is a bounded sequence in Lip™(D, 1 —«). Consequently, for
each 0 < j < n, the sequence (T(fn)Y)) is equicontinuous and hence,
up to subsequence, there exists a continuous function F on D such that

311)  T(D) = FOllg = IT(fm)? = FY |5 = 0 as m — oo,

for each 0 < 7 < n. Let f = R(F) be the restriction of F' to D, then
by applying R(T(fm)) = fm to (3.11), we have Hﬂ(g) — f9|p = 0 as
m — 00, thereby giving that

(3.12) 1f9) — f|lp — 0 as p,q — oo,
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for each 0 < j < n. Now, to prove the convergence of (P(f,,)), we show
that it is a Cauchy sequence in Z7. Considering

1P(fp) = P(fo)llzg =

" o(2)
EI( k”z{é (b@%—&@»%)

=0

(@)
z=0

#(2) (1)
(313) +sup(1 — |«[*) (so’(Z)k@”(Z)/o (fp(C)—fq(C))dC> ,

zeD

one can see that the terms in (3.13) are all dominated by the terms of
the type (3.8) and (3.9), and they all contain a term of the type (3.12).
Therefore, (3.13) along with (3.12) implies that || P(f,) — P(fy)||ze — 0
as p,q — 00. O

Lemma 3.4. Let 0 < a < 1 and let k,n be two integers with n > 0 and
k>1. Let o : D — D be in Z2,,. Then (¢)*Cy, : 22, — Z%,, is
compact if and only if (¢')*H1C, : Z¥ — Z2 is compact.

Proof. First, we recall that the differentiation and integration operators
given by
D:z3, — 23 D(f)=Ff,
and B
S:25 o 25 SN = [ Q.
0

are bounded, indeed, ||D|| < 1 and ||S]| < 1. Now, consider the following
diagram,

o (@)FCy
ZnJrl - Zn+1

ST iD
zp—- 2y,
where the operator ) : Z% — Z% is given by
(3.14) Q=Do(¢)C,08.
Therefore,
(3.15) SoQoD = (¢)C, + Py,
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where Py : 27, — 27, is the compact operator given by Py(f) =
—£(0)(¢")* — £(0(0))¢'(0)k + £(0)¢’(0)*. Note that by (3.14) and (3.15)
and boundedness of the operators S and D, one can conclude that the
operator (¢’ )kC@ 1 20 — 254 is compact if and only if the operator
Q: 2y — Z° is compact. Now, for each f € Z7 and z € D we have

(2)
Q(f)(z) =D (d(z)k ( /0 ’ f(C)dC))

(2)
=k¢'(2)" 1" (2) ( /0 ’ f(C)dC> +¢' (2) ! f(0(2))

=kPe_10(f)(2) + (&) CL(f)(2),

where Py_1, : Z; — Z7 is the compact operator given in Lemma 3.3.
Consequently, @ : Z2 — Z2 is compact if and only if (¢')*1C, : Z2 —
Z% is compact, which is the desired result. O

We remark that the result of Lemma 3.4 also holds in the case k =0
without assuming ¢ € Z7 ,. Indeed, if k = 0, then Q = ¢'C, and hence
Co: 23, — 25, is compact if and only if ¢'Cy, : Z7 — Z5. In fact,
the following result holds.

Corollary 3.5. Let 0 < a < 1, n a nonnegative integer, and ¢ an
analytic selfmap of D. Then Cy, : 25,1 — Z5 1 is compact if and only
if ¢'Cyp: 25 — 25 is compact.

We are now ready to state our main results in this section.

Theorem 3.6. Let 0 < o < 1, n € N and let C, : 2 — Z be a
composition operator induced by ¢ : D — . Then C, is compact if and
only if the weighted composition operator (¢')"Cy, : B — B* is compact.

Proof. The case n =1 is done by Corollary 3.5. Let n > 2 and consider
the composition operator C, : Z% — Z7. Then by the same argument
as in the proof of Lemma 3.4, one has

¢'C,=DoC,o0S8,
So¢'CpoD=Cuh+ Ry,
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where Py : Z&¢ — 25 is the compact operator given by Py(f) = —f((0)).
Hence, Cy : 25 — Z% is compact if and only if ¢'Cy, : Z5 | — Z9 | is
compact. Now, applying (n — 1)-times Lemma 3.4 implies that, this is
equivalent to the compactness of (¢")"C, : B* — B* which completes
the proof of the theorem. O

Applying [12, Theorem 3.1] to Theorem 3.6, one can get the following
characterization for the compactness of the composition operators on
Zygmund type spaces.

Corollary 3.7. Let 0 < o < 1, n € N and let C, : Z — Z7 be
a composition operator induced by the selfmap ¢ of D. Then C, is
compact if and only if

Sl ( Ll 2>"‘ &' (2)["! = 0.
lo(z)|=1= \ 1 — |o(2)]

Next, we apply Theorem 3.2 and Theorem 3.6 to improve the result of
[1, Theorem 4.3 and Remark 4.4] to the case 0 < o < 1. We first recall
the concept of angular derivative and Julia-Caratheodory Theorem.

Let f be a complex-valued function on D and w € 0D. We say
that the angular (or non-tangential) limit of f at w is L, denoted by
Zlim, ., f(2) = L, if f(z) — L as z — w through any triangle in D
that has one of its vertices at w. An analytic selfmap g : D — D has an
angular derivative at a point w € JD if for some 1 € ID

Zg'(w) = £ lim 7]—7g(2)7
z—w W — 2
exits (finitely).

By Julia-Caratheodory Theorem, if the angular derivative of a non-
constant analytic selfmap g : D — D exists at some point w € 9D, then
Zg'(w) # 0 [3, Chapter I of Part Six].

Let a selfmap g : D — D be continuously differentiable. If g(w) =n €
0D for some w € 0D, then clearly the angular derivative of g at w exists
and Z¢'(w) = ¢’(w). Therefore, by Julia-Caratheodory Theorem, if g is
non-constant then ¢'(w) # 0.

Theorem 3.8. Let 0 < a < 1, n € N and let Cy : Lip"(D,a) —
Lip™(D, aLbe a composition operator induced by the non-constant self-
map ¢ of D. Then Cy is compact if and only if p(D) C D.
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Proof. We only need to show ¢(D) C D whenever C, is compact and
0 < a < 1. By Theorem 3.2, if Cy : Lip"(D, o) — Lip™(D, o) is compact,
then the composition operator Cy, : Z17® — Z179 is compact, where
¢ = R(¢) = ¢|p. Hence, by Theorem 3.6, the weighted composition
operator (¢')"C, : B1™® — B~ is compact. Now, by contrary let
#(¢) = n € 9D for some ¢ € ID. Then [lim,_,;- ¢(r¢)] = |n| = 1 and
hence by Theorem 2.4, we get (¢'(¢))™ = 0. On the other hand, by the
discussion before this Theorem, Julia-Caratheodory Theorem implies
that ¢/(¢) # 0 which leads to a contradiction and completes the proof
of the theorem. O

Remark 3.9. Choe, Koo and Smith in [4, Theorem 2.3] proved the
results of Theorem 2.5 and Theorem 3.8 for the spaces Lip(9D, a)NA(D)
and Lip"(0D,a) N AD) (n € N, 0 < a < 1). On the other hand, by
[6, Lemma 4] for a continuous function f on D which is analytic on
D, f € Lip(dD,«a) if and only if f € Lip(D,«). Hence, [4, Theorem
2.3] along with [6, Lemma 4] provides another proof to Theorem 2.5 and
Theorem 3.8. Our approach has the advantage to lead us to some new
results stated in Theorem 3.6 and Corollary 3.7 besides giving a new
proof to [4, Theorem 2.3].
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