DIFFERENTIAL POLYNOMIAL RINGS OF
TRIANGULAR MATRIX RINGS

H. GHAHRAMANI AND A. MOUSSAVI*

Abstract. Let R,S be rings with identity and M be a unitary
(R,S)-bimodule. We characterize homomorphisms and derivations
of the generalized matrix ring $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, and provide a tri-
angular representation of the differential polynomial ring $T[\theta;\delta]$.

1. Introduction

Throughout the paper all rings are assumed to have identity and all
modules are unitary. The additive map $\delta : R \to R$ is called a derivation,
if for each $a,b \in R$, $\delta(ab) = a\delta(b) + \delta(a)b$. For an element $x \in R$, the
mapping $I_x : R \to R$, given by $I_x(a) = ax - xa$, for each $a \in R$, is called
an inner derivation of R.

We denote $R[\theta;\delta]$ to be the differential polynomial ring whose ele-
ments are the polynomials over R, the addition is defined as usual and
the multiplication is subject to the relation $\theta a = a\theta + \delta(a)$ for any $a \in R$.

Derivations of the algebra of triangular matrices and some class of
their subalgebras have been the object of active research for a long time
[1, 4, 5, 7-9]. Coelho and Milies provided in [4] a description of the
derivations in $T_n(R)$, the upper triangular matrices over R. They proved

MSC(2000): Primary: 16S36 ; Secondary: 16E50
Keywords: Derivation, homomorphism, differential polynomial ring, triangular matrix ring
Received:15 August 2007, Accepted:16 May 2008
*Corresponding author
© 2008 Iranian Mathematical Society.
that every derivation is the sum of an inner derivation and another one
induced from \(R \). Jondrup in [7] gave a new proof of this result. A similar
result for full matrix rings appears in [5], and the special case where \(R \)
is an algebra over a field, with \(\text{char}(R) \neq 2, 3 \) and \(n > 2 \), is given in [1].
The case of upper triangular matrix rings over a simple algebra finite
dimensional over its center appears in [5].

Here we give a description of homomorphisms and derivations of gen-
eralized matrix rings \(T := \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \) assuming no restrictions on \(R, S \)
and \(M \), other than the existence of the identity element. We shall show
that they are obtained in a very natural way. Analysts have studied
these derivations in the context of algebras on certain normed spaces.
Many widely studied algebras, including upper triangular matrix alge-
bras, nest algebras and triangular Banach algebras, may be viewed as
triangular algebras.

A large class of ring extensions which have a generalized triangular
matrix representations is investigated by Birkenmeier et al. in [3].

Let \(\delta_R : R \to R \) and \(\delta_S : S \to S \) be derivations. The additive mapping
\(\tau : M \to M \) is called a generalized derivation with respect to \((\delta_R, \delta_S) \),
on \(M \), if \(\tau(rm) = \delta_R(r)m + r\tau(m) \), \(\tau(ms) = \tau(m)s + m\delta_S(s) \), for each
\(r \in R, s \in S \) and \(m \in M \).

If \(d : T \to T \) is the derivation induced by the generalized derivation
\(\tau \) with respect to \((\delta_R, \delta_S) \), i.e.,
\[
d \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix},
\]
for each \(r \in R, s \in S \) and \(m \in M \),
then we provide a triangular representation of the differential polynomial
ring \(T[\theta; d] \) in terms of the triangular matrix ring. Indeed, we prove the
isomorphism:
\[
T[\theta; d] \cong \begin{pmatrix} R[x; \delta_R] & M[x, y; \tau] \\ 0 & S[y; \delta_S] \end{pmatrix},
\]
where \(R[x; \delta_R] \) and \(S[y; \delta_S] \) are the differential polynomial rings over \(R \)
and \(S \), and \(M[x, y; \tau] \) is an \((R[x; \delta_R], S[y; \delta_S]) \)-bimodule.

We denote \(E_{ij} \) for the matrix units, for all \(i, j \).
2. Generalized module homomorphisms

In order to describe homomorphisms of the generalized matrix rings, first we introduce and study the notion of generalized module homomorphisms.

Definition 2.1. Let R, R', S and S' be rings, M an (R, S)-bimodule, N an (R', S')-bimodule, $\varphi_1 : R \to R'$ and $\varphi_2 : S \to S'$ be ring homomorphisms. Then an additive mapping $T : M \to N$ is called a generalized module homomorphism related to (φ_1, φ_2), if $T(rm) = \varphi_1(r)T(m)$, $T(ms) = T(m)\varphi_2(s)$, for each $r \in R, s \in S$ and $m \in M$.

Lemma 2.2. Let M be an (R, S)-bimodule, N be an (R', S')-bimodule and $T : M \to N$ be a generalized module homomorphism related to (φ_1, φ_2). Then, the mapping $\Psi : (R \times M \times 0 \times S) \to (R' \times N \times 0 \times S')$, given by

$$\Psi \left(\begin{array}{c} r \\ m \\ 0 \\ s \end{array} \right) = \left(\begin{array}{c} \varphi_1(r) \\ T(m) \\ 0 \\ \varphi_2(s) \end{array} \right),$$

is a ring homomorphism.

Proof. Clearly Ψ is additive. We have,

$$\Psi \left(\begin{array}{c} r \\ m \\ 0 \\ s \end{array} \right) \left(\begin{array}{c} r' \\ m' \\ 0 \\ s' \end{array} \right) = \left(\begin{array}{c} \varphi_1(r)\varphi_2(r') \\ \varphi_1(r)T(m') + T(m)\varphi_2(s') \\ 0 \\ \varphi_2(s)\varphi_2(s') \end{array} \right) = \Psi \left(\begin{array}{c} r \\ m \\ 0 \\ s \end{array} \right) \Psi \left(\begin{array}{c} r' \\ m' \\ 0 \\ s' \end{array} \right).$$

\square

Theorem 2.3. Let R, R', S and S' be rings with identity, M be a unitary (R, S)-bimodule and N be a unitary (R', S')-bimodule. If $\Psi : (R \times M \times 0 \times S) \to (R' \times N \times 0 \times S')$ is a mapping, then the followings are equivalent:

1. $\Psi \left(\begin{array}{c} r \\ m \\ 0 \\ s \end{array} \right) = \left(\begin{array}{c} \varphi_1(r) \\ T(m) \\ 0 \\ \varphi_2(s) \end{array} \right)$, where $\varphi_1 : R \to R'$ and $\varphi_2 : S \to S'$ are ring homomorphisms and $T : M \to N$ is a generalized module homomorphism related to (φ_1, φ_2).

II. Ψ is a ring homomorphism such that $\Psi(RE_{11}) \subseteq R'E_{11}$, and $\Psi(SE_{22}) \subseteq S'E_{22}$.

Proof. ($I \Rightarrow II$). The proof clearly follows from Lemma 2.2.

($II \Rightarrow I$). The mappings $\varphi_1 : R \to R'$ and $\varphi_2 : S \to S'$ are defined by

$$
\Psi(rE_{11}) = \varphi_1(r)E_{11} \text{ and } \Psi(sE_{22}) = \varphi_2(s)E_{22}.
$$

By considering the effect of Ψ on $(r + r', 0, s + s')$, we see that φ_1, φ_2 are additive, and

$$
\Psi \left(\begin{array}{cc}
r' & 0 \\
0 & ss'
\end{array} \right) = \Psi \left(\begin{array}{cc}
r & 0 \\
0 & s
\end{array} \right) \Psi \left(\begin{array}{cc}
r' & 0 \\
0 & s'
\end{array} \right).
$$

So we have,

$$
\left(\begin{array}{c}
\varphi_1(r') \\
0
\end{array} \right) = \left(\begin{array}{c}
\varphi_1(r) \\
0
\end{array} \right) \varphi_1(1) \left(\begin{array}{c}
0 \\
\varphi_2(s)
\end{array} \right).
$$

Hence, we have,

$$
\varphi_1(rr') = \varphi_1(r)\varphi_1(r') \text{ and } \varphi_2(ss') = \varphi_2(s)\varphi_2(s'), \text{ and } \varphi_1, \varphi_2 \text{ are ring homomorphisms}.
$$

Now, assume that $\Psi(mE_{12}) = \left(\begin{array}{cc}
\alpha(m) & T(m) \\
0 & \beta(m)
\end{array} \right)$, for some $\alpha : M \to R'$, $T : M \to N$ and $\beta : M \to S'$. Then, for each $m \in M$, we have,

$$
\Psi(mE_{12}) = \Psi(E_{11}mE_{12}) = \varphi_1(1)E_{11} \left(\begin{array}{cc}
\alpha(m) & T(m) \\
0 & \beta(m)
\end{array} \right). \text{ So,}
$$

$$
\left(\begin{array}{cc}
\alpha(m) & T(m) \\
0 & \beta(m)
\end{array} \right) = \left(\begin{array}{cc}
\varphi_1(1)\alpha(m) & \varphi_1(1)T(m) \\
0 & 0
\end{array} \right)
$$

and hence $\beta(m) = 0$. So, $\Psi(mE_{12}) = \Psi(mE_{12}E_{22}) = \left(\begin{array}{cc}
\alpha(m) & T(m) \\
0 & \beta(m)
\end{array} \right) \varphi_2(1)E_{22}$.

Thus, we have,

$$
\left(\begin{array}{cc}
\alpha(m) & T(m) \\
0 & \beta(m)
\end{array} \right) = \left(\begin{array}{cc}
0 & T(m)\varphi_2(1) \\
0 & \beta(m)\varphi_2(1)
\end{array} \right),
$$

and so $\alpha(m) = 0$, for each $m \in M$.

Therefore, $\Psi(mE_{12}) = T(m)E_{12}$. We have $\Psi(rmE_{12}) = \Psi(rE_{11})\Psi(mE_{12})$, and hence $T(rm)E_{12} = \varphi_1(r)T(m)E_{12}$. Thus, $T(rm) = \varphi_1(r)T(m)$.

Similarly, $T(ms) = T(m)\varphi_2(s)$.

Therefore, we have,
\[\Psi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \varphi_1(r) & T(m) \\ 0 & \varphi_2(s) \end{pmatrix}, \]
and that \(\varphi_1, \varphi_2 \) and \(T \) satisfy the required conditions. \(\Box \)

Proposition 2.4. If \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \) and \(\begin{pmatrix} R' & N \\ 0 & S' \end{pmatrix} \) have the identity elements and \(\Psi : \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \rightarrow \begin{pmatrix} R' & N \\ 0 & S' \end{pmatrix} \) is a ring homomorphism such that \(\Psi(E_{11}) = E_{11} \) and \(\Psi(E_{22}) = E_{22} \), then \(\Psi \) satisfies the conditions I and II of Theorem 2.3.

Proof. Let \(\Psi(rE_{11}) = \begin{pmatrix} \alpha(r) & \beta(r) \\ 0 & \gamma(r) \end{pmatrix} \) for some \(\alpha : R \rightarrow R' \), \(\beta : R \rightarrow N \) and \(\gamma : R \rightarrow S' \). We have, \(\Psi(rE_{11}) = \Psi(rE_{11}) \Psi(E_{11}) \). So
\[
\begin{pmatrix} \alpha(r) & \beta(r) \\ 0 & \gamma(r) \end{pmatrix} = \begin{pmatrix} \alpha(r) & \beta(r) \\ 0 & \gamma(r) \end{pmatrix} E_{11} = \alpha(r)E_{11}
\]
and hence \(\beta(r) = 0, \gamma(r) = 0 \).

So, \(\Psi(rE_{11}) = \alpha(r)E_{11} \), and \(R\Psi(E_{11}) \subseteq R'E_{11} \). We have,
\[
\Psi(sE_{22}) = \begin{pmatrix} \alpha'(s) & \beta'(s) \\ 0 & \gamma'(s) \end{pmatrix},
\]
where \(\alpha' : S \rightarrow R' \), \(\beta' : S \rightarrow N \) and \(\gamma' : S \rightarrow S' \) are additive mappings. But, \(\Psi(sE_{22}) = \Psi(E_{22}) \Psi(sE_{22}) \), and
\[
\begin{pmatrix} \alpha'(s) & \beta'(s) \\ 0 & \gamma'(s) \end{pmatrix} = E_{22} \begin{pmatrix} \alpha'(s) & \beta'(s) \\ 0 & \gamma'(s) \end{pmatrix} = \gamma'(s)E_{22}, \text{ so } \alpha'(s) = 0, \beta'(s) = 0.
\]

Thus, \(\Psi(sE_{22}) = \gamma'(s)E_{22} \), and hence \(\Psi(SE_{22}) \subseteq S'E_{22} \). Therefore, \(\Psi \) satisfies the condition II of Theorem 2.3. \(\Box \)

Example 2.5. The converse of Proposition 2.4 is not true, in general. Let \(M \) be a unitary \((R,S)\)-bimodule. Then, we make \(M \) a unitary \(R \times S \)-bimodule by defining \((r,s)m := rm, m(r,s) := ms\), for each \(r \in R, m \in M \) and \(s \in S \). Define \(\varphi_1 : R \rightarrow R \times S \) and \(\varphi_2 : S \rightarrow R \times S \), given by \(\varphi_1(r) = (r,0) \) and \(\varphi_2(s) = (0,s) \), for each \(r \in R, s \in S \). Then, \(\varphi_1 \) and \(\varphi_2 \) are ring homomorphisms. Let \(T \in \text{Hom}(RMS, RMS) \). Now we see that \(T \) is a generalized module homomorphism related to \((\varphi_1, \varphi_2)\). Since \(T(rm) = rT(m) \), then
we have $T(rm) = (r,0)T(m) = \varphi_1(r)T(m)$ and $T(ms) = T(m)(0,s) = T(m)\varphi_2(s)$. Thus, the mapping
$$\Psi : \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \rightarrow \begin{pmatrix} R \times S & M \\ 0 & R \times S \end{pmatrix},$$
given by
$$\Psi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \varphi_1(r) & T(m) \\ 0 & \varphi_2(s) \end{pmatrix},$$
is a ring homomorphism and we have,
$$\Psi(E_{11}) = \varphi_1(1)E_{11} = (1,0)E_{11}, \quad \Psi(E_{22}) = (0,1)E_{22}. \text{ Note that } (1,0) \text{ and } (0,1) \text{ are not the identity elements of } R \times S. \quad \square$$

Lemma 2.6. Let R,R',S and S' be rings, M be an (R,S)-bimodule, N be an (R',S')-bimodule, and $\varphi_1 : R \rightarrow R', \varphi_2 : S \rightarrow S'$ be ring isomorphisms. Let $T : M \rightarrow N$ be a bijective generalized homomorphism related to (φ_1, φ_2). Then, the mapping defined in Lemma 2.2 is a ring isomorphism.

Proof. By Lemma 2.2, Ψ is a ring homomorphism. We have,
$$\Psi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = 0,$$
and so $\varphi_1(r) = 0, T(m) = 0, \varphi_2(m) = 0$. So $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = 0$, and hence Ψ is injective. If $\begin{pmatrix} r' & n \\ 0 & s' \end{pmatrix} \in \begin{pmatrix} R' & N \\ 0 & S' \end{pmatrix}$ and φ_1, φ_2, T are surjective, then there exist $r \in R, s \in S$ and $m \in M$, such that $\varphi_1(r) = r', \varphi_2(s) = s'$ and $T(m) = n$. So, we have,
$$\Psi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \varphi_1(r) & T(m) \\ 0 & \varphi_2(s) \end{pmatrix} = \begin{pmatrix} r' & n \\ 0 & s' \end{pmatrix}.$$
Therefore, Ψ is surjective and hence a ring isomorphism. \quad \square

The mapping T in Lemma 2.6 is called a generalized module isomorphism related to (φ_1, φ_2).

3. Derivations on generalized triangular matrix rings

Let R,S be rings with identity and M be an (R,S)-bimodule. In this section we determine the derivations of the generalized triangular matrix ring
\[T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}, \]

in terms of derivations of \(R \) and \(S \) and some special mapping of \(M \).

Definition 3.1. Let \(R, S \) be rings, \(M \) be an \((R, S)\)-bimodule, \(\delta_R : R \to R \) and \(\delta_S : S \to S \) be derivations. The additive mapping \(\tau : M \to M \) is called a generalized derivation with respect to \((\delta_R, \delta_S)\), on \(M \), if \(\tau(rm) = \delta_R(r)m + r\tau(m) \) and \(\tau(ms) = \tau(m)s + m\delta_S(s) \), for each \(r \in R, s \in S \) and \(m \in M \).

Theorem 3.2. If \(d : T \to T \) is a derivation, then \(d = \bar{d} + I_A \), where \(I_A \) is an inner derivation with \(A \in T \) and \(\bar{d} \), is given by

\[\bar{d} \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix}, \]

for derivations \(\delta_R : R \to R, \delta_S : S \to S \) and a generalized derivation \(\tau : M \to M \).

Proof. It is enough to determine \(d \) on \(rE_{11}, mE_{12} \) and \(sE_{22} \), for each \(r \in R, s \in S \) and \(m \in M \). Then, we have,

\[d(E_{11}) = d(E_{11}^2) = E_{11}d(E_{11}) + d(E_{11})E_{11}. \quad (\star) \]

Let \(d(E_{11}) = \begin{pmatrix} r & b \\ 0 & s \end{pmatrix} \), for some \(r \in R, s \in S \) and \(b \in M \). From (\(\star \)), we have,

\[\begin{pmatrix} r & b \\ 0 & s \end{pmatrix} = E_{11} \begin{pmatrix} r & b \\ 0 & s \end{pmatrix} + \begin{pmatrix} r & b \\ 0 & s \end{pmatrix} E_{11} = \begin{pmatrix} 2r & b \\ 0 & 0 \end{pmatrix}. \]

So we have \(r = 0 \) and \(s = 0 \), and hence \(d(E_{11}) = bE_{12} \). But,

\[d(E_{11}) + d(E_{22}) = d(I) = 0, \text{ so } d(E_{22}) = -bE_{12}. \]

Now we have,

\[d(mE_{12}) = d(E_{11}mE_{12}) = E_{11}d(mE_{12}) + d(E_{11})mE_{12}. \quad (\star\star) \]

Assume that

\[d(mE_{12}) = \begin{pmatrix} y_1 & y_2 \\ 0 & y_3 \end{pmatrix}, \]

for some \(y_1 \in R, y_3 \in S \) and \(y_2 \in M \). From (\(\star\star \)), we have,

\[\begin{pmatrix} y_1 & y_2 \\ 0 & y_3 \end{pmatrix} = E_{11} \begin{pmatrix} y_1 & y_2 \\ 0 & y_3 \end{pmatrix} + bE_{12}mE_{12} = \begin{pmatrix} y_1 & y_2 \\ 0 & 0 \end{pmatrix}. \]

So \(y_3 = 0 \).

We also have,
\[d(mE_{12}) = d(mE_{12}E_{22}) = mE_{12}d(E_{22}) + d(mE_{12})E_{22}. \]

So,

\[
\begin{pmatrix}
 y_1 & y_2 \\
 0 & y_3
\end{pmatrix}
= \begin{pmatrix}
 0 & y_2 \\
 0 & y_3
\end{pmatrix}.
\]

Thus, we have \(y_1 = 0 \) and that \(d(mE_{12}) = y_2 E_{12} = \tau(m)E_{12} \). So, \(\tau : M \rightarrow M \) is a mapping.

To determine \(d(rE_{11}) \) for each \(r \in R \), assume \(d(rE_{12}) = \begin{pmatrix} z_1 & z_2 \\ 0 & z_3 \end{pmatrix} \), with \(z_1 \in R \), \(z_3 \in S \) and \(z_2 \in M \). We have,

\[rE_{11} = E_{11}rE_{11} = rE_{11}E_{11}, \]

so \(d(rE_{11}) = d(rE_{11})E_{11} + rE_{11}d(E_{11}) \), for each \(r \in R \). So,

\[
\begin{pmatrix}
 z_1 & z_2 \\
 0 & z_3
\end{pmatrix}
= \begin{pmatrix}
 0 & rb \\
 0 & 0
\end{pmatrix}.
\]

Hence \(z_2 = rb \) and \(z_3 = 0 \).

Now define \(\delta_R : R \rightarrow R \) given by \(\delta_R(r) = z_1 \). Then we have,

\[
d(rE_{11}) = \begin{pmatrix}
 \delta_R(r) & rb \\
 0 & 0
\end{pmatrix}.
\]

Now we determine \(d(sE_{22}) \) for each \(s \in S \). Assume that \(d(sE_{22}) = \begin{pmatrix} w_1 & w_2 \\ 0 & w_3 \end{pmatrix} \), with \(w_1 \in R \), \(w_3 \in S \) and \(w_2 \in M \). We have, \(d(sE_{22}) = d(E_{22}sE_{22}) = d(E_{22})sE_{22} + E_{22}d(sE_{22}) \). So,

\[
\begin{pmatrix}
 w_1 & w_2 \\
 0 & w_3
\end{pmatrix}
= \begin{pmatrix}
 0 & -bs \\
 0 & w_3
\end{pmatrix},
\]

and hence \(w_2 = -bs \) and \(w_1 = 0 \). Now we define \(\delta_S : S \rightarrow S \) given by \(\delta_S(s) = w_3 \). So, \(d(sE_{22}) = \begin{pmatrix} 0 & -bs \\ 0 & \delta_S(s) \end{pmatrix} \). Now by the above computations we get,

\[
d\begin{pmatrix}
 r & m \\
 0 & s
\end{pmatrix}
= \begin{pmatrix}
 \delta_R(r) & rb \\
 0 & 0
\end{pmatrix} + \begin{pmatrix}
 0 & \tau(m) \\
 0 & 0
\end{pmatrix} + \begin{pmatrix}
 0 & -bs \\
 0 & \delta_S(s)
\end{pmatrix}
= \begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix} + IA\begin{pmatrix}
 r & m \\
 0 & s
\end{pmatrix},
\]

where \(A = bE_{12} = d(E_{11}) \).
Now we show that δ_R and δ_S are derivations of R and S respectively and τ is a generalized (δ_R, δ_S)-derivation.

For each $r, r' \in R$, we have $d((r + r')E_{11}) = d(rE_{11}) + d(r'E_{11})$. So $\delta_R(r + r') = \delta_R(r) + \delta_R(r')$.

Now, $d(rr'E_{11}) = \begin{pmatrix} \delta_R(rr') & rr'b \\ 0 & 0 \end{pmatrix}$, and

$d(rr'E_{11}) = d(rE_{11}r'E_{11}) = d(rE_{11})r'E_{11} + rE_{11}d(r'E_{11})$

$= \begin{pmatrix} \delta_R(r)r' + r\delta_R(r') & rr'b \\ 0 & 0 \end{pmatrix}$.

Thus, we have $\delta_R(rr') = \delta_R(r)r' + r\delta_R(r')$ for each $r, r' \in R$, and hence δ_R is a derivation of R. Similarly, δ_S is a derivation of S.

Next, we have that τ is an additive mapping of M. We have,

$d(rmE_{12}) = d(rE_{11}mE_{12}) = d(rE_{11})mE_{12} + rE_{11}d(mE_{12})$. So,

$\begin{pmatrix} 0 & \tau(rm) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \delta_R(r)m + r\tau(m) \\ 0 & 0 \end{pmatrix}$.

Thus, for each $r \in R$ and $m \in M$, $\tau(rm) = r\tau(m) + \delta_R(r)m$.

Similarly, $\tau(ms) = \tau(m)s + m\delta_S(s)$, for each $s \in S$ and $m \in M$. Therefore, τ is a generalized derivation, and $d = \bar{d} + IA$, where

$\bar{d} \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix}$.

Now, we show that for every given derivations $\delta_R : R \to R$ and $\delta_S : S \to S$, every generalized derivation $\tau : M \to M$ with respect to (δ_R, δ_S), induces a derivation \bar{d} on the formal triangular matrix ring T.

Proposition 3.3. Let M be a unitary (R, S)-bimodule. If d is a mapping of

$\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, then the followings are equivalent:

I. $d = \begin{pmatrix} \delta_R & \tau \\ 0 & \delta_S \end{pmatrix}$, where $\delta_R : R \to R$, $\delta_S : S \to S$ are derivations and $\tau : M \to M$ is a generalized derivation related to (δ_R, δ_S).

II. d is a derivation of

$\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ such that $d(RE_{11}) \subseteq RE_{11}$.

III. d is a derivation of

$\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ such that $d(E_{11}) = 0$.

IV. d is a derivation of $\left(\begin{array}{cc} R & M \\ 0 & S \end{array}\right)$ such that $d(SE_{22}) \subseteq SE_{22}$.

V. d is a derivation of $\left(\begin{array}{cc} R & M \\ 0 & S \end{array}\right)$ such that $d(E_{22}) = 0$.

Proof. (I\RightarrowII). Since $\delta_R, \delta_S,$ and τ are additive, then d is also additive.

So, we have,

\[
d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \begin{pmatrix} r' & m' \\ 0 & s' \end{pmatrix} =
\begin{pmatrix}
 r\delta_R(r') + \delta_R(r)r' + \tau(m') + \delta_R(r)m' + \tau(m)s' + m\delta_S(s') \\
 0 \\
 0 & \delta_S(s') + \delta_S(s)s'
\end{pmatrix} +
\begin{pmatrix}
 0 & 0 \\
 0 & \delta_S(s')
\end{pmatrix}.
\]

So, d is a derivation. We have $d(rE_{11}) = \delta_R(r)E_{11}$ for each $r \in R$, and so $d(RE_{11}) \subseteq RE_{11}$.

(II\RightarrowIII). By Theorem 3.2, we have,

\[
d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} =
\begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix} + I_{bE_{12}}\begin{pmatrix} r & m \\ 0 & s \end{pmatrix}
\]

with $b \in M$. We have, $d(E_{11}) = bE_{12}$. Since $d(RE_{11}) \subseteq RE_{11}$, then $b = 0$. So, $d(E_{11}) = 0$.

(III\RightarrowIV). We have,

\[
d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} =
\begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix} + (rb - bs)E_{12}, d(E_{11}) = 0. So, b = 0.
\]

We have $d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} =
\begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix}$,

\[
d(SE_{22}) = \delta_S(s)E_{22}, and so d(SE_{22}) \subseteq SE_{22}.
\]

(IV\RightarrowV). It is similar to (II\RightarrowIII).

(IV\RightarrowI). We have,

\[
d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} =
\begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix} + (rb - bs)E_{12}, and so d(E_{22}) = -bE_{12}.
\]

Thus, $b = 0$, and hence $d\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} =
\begin{pmatrix}
 \delta_R(r) & \tau(m) \\
 0 & \delta_S(s)
\end{pmatrix}$.

\[\square\]
By the above result we see that any generalized derivation \(\tau \) induces a derivation \(\dd \) on \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), which satisfies one of the above equivalent conditions; and every derivation on \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), is a sum of an inner derivation and a derivation \(\dd \) induced by \(\tau \).

Proposition 3.4. Let \(M \) be a unitary \((R, S) \)-bimodule. If \(d \) is a mapping of \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), then the followings are equivalent:

1. \(d = I_bE_{12} \), where \(0 \neq b \in M \).
2. \(d \) is a nonzero derivation of \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), \(d \left(\begin{pmatrix} R & 0 \\ 0 & S \end{pmatrix} \right) \subseteq ME_{12} \) and \(d(mE_{12}) = 0 \), for each \(m \in M \).

Proof. (I \(\Rightarrow \) II). It is clear. (II \(\Rightarrow \) I). We have,

\[
d \left(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \right) = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix} + (rb - bs)E_{12}, \text{ with } b \in M.
\]

We see that \(\delta_R = 0 \), since otherwise, if for some \(r \in R \), \(\delta_R(r) \neq 0 \), then \(d(rE_{11}) = \delta_R(r)E_{12} + rbE_{12} \notin ME_{12} \), which contradicts the assumption.

Similarly, \(\delta_S = 0 \). We also have \(\tau = 0 \), since otherwise, if for some \(m \neq 0 \), \(\tau(m) \neq 0 \), then \(d(mE_{12}) = \tau(m)E_{12} \neq 0 \). So,

\[
d \left(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \right) = (rb - bs)E_{12} = I_bE_{12} \left(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \right).
\]

Since \(d \neq 0 \), we have \(b \neq 0 \). \(\square \)

By the following example we can not weaken the condition II in Proposition 3.4.

Example 3.5. If \(0 \neq T \in \text{Hom}(RM_S, RM_S) \), then \(T \) is a generalized \((I_0, I_0)\)-derivation. Since \(T(rm) = rT(m) = rT(m) + I_0(r)m \), \(T(ms) = T(m)s = T(m)s + mI_0(s) \), and the mapping \(\Delta \) on \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), given by

\[
\Delta \left(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \right) = \begin{pmatrix} 0 & T(m) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & rb - bs \\ 0 & 0 \end{pmatrix}
\]
is a derivation. So, we have, $\Delta(E_{11}) = bE_{12} \neq 0$ and $\Delta(mE_{12}) = \tau(m)E_{12}$.

But, $I_{dE_{12}}mE_{12} = 0$, with $m \in M$. So, this contradicts the fact that Δ is of the form of $I_{dE_{12}}$.

Let $\delta_S : S \to S$ be a nonzero derivation with $\delta_S(S) \subseteq \text{ann}_SM$. Then, the mapping $\Delta : \left(\begin{array}{cc} R & M \\ 0 & S \end{array} \right) \to \left(\begin{array}{cc} R & M \\ 0 & S \end{array} \right)$, given by

$$\Delta \left(\begin{array}{cc} r & m \\ 0 & s \end{array} \right) = \delta_S(s)E_{22} + I_{bE_{12}} \left(\begin{array}{cc} r & m \\ 0 & s \end{array} \right), \quad b \neq 0,$$

is a derivation. We have $\Delta(E_{11}) = bE_{12} \neq 0$, and $\Delta(RE_{11}) \subseteq ME_{12}, \Delta(mE_{12}) = 0$. But, $\Delta \neq I_{dE_{12}}$, since $\Delta(sE_{22}) = \left(\begin{array}{cc} 0 & -bs \\ 0 & \delta_S(s) \end{array} \right)$. We also have $I_{dE_{12}}(sE_{22}) = -dsE_{12}$, as $\Delta SE_{22} \nsubseteq ME_{12}$ and $I_{dE_{12}}(SE_{22}) \subseteq ME_{12}$. \qed

Let $a \in R$ and $b \in S$ be fixed elements. Define the mapping $\tau_{(a,b)} : M \to M$ given by $\tau_{(a,b)}(m) = am - mb$ for each $m \in M$. Then, $\tau_{(a,b)}$ is a generalized derivation with respect to (I_{-a}, I_{-b}), on M, where I_{-a}, I_{-b} are the inner derivations.

For each $r \in R$ and $m \in M$, we have,

$$\tau_{(a,b)}(rm) = arm - rmb = arm + ram - ram - rmb = (ar - ra)m + r(am - mb) = I_{-a}(r)m + r\tau_{(a,b)}(m).$$

Similarly, we have $\tau_{(a,b)}(ms) = \tau_{(a,b)}(m)s + mI_{-b}(s)$, for each $s \in S$ and $m \in M$.

We call $\tau_{(a,b)}$ the generalized inner derivation on M.

Lemma 3.6. The induced derivation of $\tau_{(a,b)}$ on T with respect to (I_{-a}, I_{-b}) is an inner derivation.

Proof. It is clear.

We notice that the notion of the generalized derivation defined on a module is a generalization of the notion of the derivation defined on a ring. If R is a ring, $d : R \to R$ a derivation and R is considered as an (R, R)-bimodule, then d is a (d, d)-generalized derivation on R, and every inner derivation I_a of R is the inner generalized derivation $\tau_{(a,a)}$ on R.

If $T : M \to M$ is an (R, S)-bimodule homomorphism, that is T is an additive mapping and $T(rm) = rT(m), T(ms) = T(m)s$, for each $r \in R, m \in M$, and $s \in S$, then T is a generalized derivation with respect
to \((I_0, I_0)\) on \(M\). So, the generalized derivation is a generalization of bimodule homomorphisms.

Lemma 3.7. If \(\tau\) is a generalized derivation with respect to \((\delta_R, \delta_S)\) on \(M\), then we have the Libnietz formula as follows:

\[
\tau^n(rm) = \sum_{k=0}^{n} \binom{n}{k} \delta_R^k(r) \tau^{n-k}(m),
\]

\[
\tau^n(ms) = \sum_{k=0}^{n} \binom{n}{k} \tau^{n-k}(m) \delta_S^k(s),
\]

for each \(r \in R, s \in S\) and \(m \in M\).

Proof. It is clear. \(\square\)

Now, we provide another proof of the main result due to Coelho and Milies [4], which is different from the one due to Jondrup [7]. This is a corollary and an application of Theorem 2.2.

Theorem 3.8. Let \(R\) be a ring with identity. Every derivation \(\triangle\) on \(T_n(R)\), with \(n \geq 2\), is of the form:

\[
\triangle(r_{ij})_{i,j} = (\delta(r_{ij}))_{i,j} + I_A(r_{ij})_{i,j},
\]

where \(\delta : R \to R\) is a derivation and \(I_A\) is the inner derivation induced by \(A\).

Proof. We first consider the case \(n = 2\). Let \(T_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}\), and \(\triangle : \begin{pmatrix} R & R \\ 0 & R \end{pmatrix} \to \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}\) be a derivation. We have,

\[
\triangle \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix} = \begin{pmatrix} \delta(r_1) & \tau(r_2) \\ 0 & \delta'(r_3) \end{pmatrix} + I_{bE_{12}} \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix},
\]

and \(\tau : R \to R\) is a generalized derivation related to \((\delta, \delta')\). We have,

\[
\tau(r) = \tau(r_1) = r\tau(1) + \delta(r) = ra + \delta'(r),
\]

and \(ra + \delta(r) = ar + \delta'(r)\).

Hence \(\delta(r) = ar - ra + \delta'(r)\). So,

\[
\triangle \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix} = \begin{pmatrix} \delta(r_1) & \tau(r_2) - r_2a + r_2a \\ 0 & \delta'(r_3) - I_a(r_3) + I_a(r_3) \end{pmatrix} + I_{bE_{12}} \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix}
\]

\[
= \begin{pmatrix} \delta(r_1) & \delta'(r_2) \\ 0 & \delta'(r_3) \end{pmatrix} + I_{aE_{22}} \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix} + I_{bE_{12}} \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix}
\]

\[
= \begin{pmatrix} \delta(r_1) & \delta'(r_2) \\ 0 & \delta'(r_3) \end{pmatrix} + I_{bE_{12} + aE_{22}} \begin{pmatrix} r_1 & r_2 \\ 0 & r_3 \end{pmatrix}.
\]
So, \triangle satisfies the required conditions.

Now, we prove the theorem by induction on n, for $n \geq 2$. Assume inductively that the result holds for n. Now, we have the ring isomorphism

$$T_{n+1}(R) \cong \begin{pmatrix} R & R^n \\ 0 & T_n(R) \end{pmatrix},$$

with $R^n = R \times \cdots \times R$, where multiplication on R^n is given by $r(r_1, \ldots, r_n) = (rr_1, \ldots, rr_n)$, with $r, r_1, \ldots, r_n \in R$, and multiplication by $T_n(R)$ to R^n is the matrix multiplication. The derivation \triangle on

$$\begin{pmatrix} R & R^n \\ 0 & T_n(R) \end{pmatrix}$$

is $\triangle = \begin{pmatrix} \delta_1 & \tau' \\ 0 & \delta_2 \end{pmatrix} + I_B$, where $\delta_1 : R \to R$, $\delta_2 : T_n(R) \to T_n(R)$ are derivations and $\tau' : R^n \to R^n$ is the generalized derivation. By the hypothesis,

$$\delta_2(r_{ij})_{i,j} = (\delta_2(r_{ij}))_{i,j} + I_A(r_{ij}), \ A \in T_n(R),$$

we have,

$$\Delta = \begin{pmatrix} \delta_1 & \tau' \\ 0 & \delta_2 \end{pmatrix} + I_B.$$

Since I_A is an inner derivation on $T_n(R)$, then $\tau_{(0,A)}$ is a generalized derivation with respect to (I_0, I_A) and $\begin{pmatrix} 0 & \tau_{(0,A)} \\ 0 & I_A \end{pmatrix}$ is an inner derivation on $\begin{pmatrix} R & R^n \\ 0 & T_n(R) \end{pmatrix}$. So, we have,

$$\Delta = \begin{pmatrix} \delta_1 & \tau' - \tau_{(0,A)} \\ 0 & (\delta_2)_{ij} \end{pmatrix} + \begin{pmatrix} 0 & \tau_{(0,A)} \\ 0 & I_A \end{pmatrix} + I_B,$$

where $\tau = \tau' - \tau_{(0,A)}$ is the generalized derivation related to $(\delta_1, (\delta_2)_{(i,j)})$.

We determine the structure of the derivation $\begin{pmatrix} \delta_1 & \tau \\ 0 & (\delta_2) \end{pmatrix}$ in terms of δ_1. We have,

$$\tau(0, \ldots, r_i, \ldots, 0) = \tau([0, \ldots, r_i, \ldots, 0)e_{ii}] =$$

$$\tau(0, \ldots, r_i, \ldots, 0)e_{ii} + (0, \ldots, r_i, \ldots, 0)(\delta_2(1)e_{ii}).$$

If $\tau(0, \ldots, r_i, \ldots, 0) = (u_1, \ldots, u_n)$, then we have,

$$(u_1, \ldots, u_n) = (u_1, \ldots, u_n)e_{ii} = (0, \ldots, u_i, \ldots, 0).$$

So for each $j \neq i$, $u_j = 0$, and hence $\tau(0, \ldots, r_i, \ldots, 0) = (0, \ldots, \tau(r_i), \ldots, 0)$. By the definition, $\tau_i : R \to R$ is additive, for $i = 1, \ldots, n$. We have,
\[\tau(0, \ldots, r_{i}^t, \ldots, 0) = \tau[r(0, \ldots, r_{i}^t, \ldots, 0)] = r \tau(0, \ldots, r_{i}^t, \ldots, 0) + \delta_1(r)(0, \ldots, r_{i}^t, \ldots, 0). \]

So, \((0, \ldots, \tau_i(r_{i}^t), \ldots, 0) = (0, \ldots, r \tau_i(r_{i}^t) + \delta_1(r)r_{i}^t, \ldots, 0) \), and hence \(\tau_i(r_{i}^t) = r \tau_i(r_{i}^t) + \delta_1(r)r_{i}^t \). Thus, \(\tau_i(r) = \tau_i(r1) = r \tau_i(1) + \delta_1(r) \). We have,

\[\tau(0, \ldots, r_{i}^t r, \ldots, 0) = \tau[(0, \ldots, r_{i}^t, \ldots, 0)r e_{ii}], \quad (0, \ldots, \tau_i(r_{i}^t r), \ldots, 0) = (0, \ldots, \tau_i(r_{i}^t), \ldots, 0)r e_{ii} + (0, \ldots, r_{i}^t, \ldots, 0) \delta_2(r) e_{ii} = (0, \ldots, \tau_i(r_{i}^t)r + r_{i}^t \delta_2(r), \ldots, 0). \]

Hence, \(\tau_i(r) = \tau_i(1)r + \delta_2(r) \). Therefore, \(\tau_i \) is a \((\delta_1, \delta_2) \) generalized derivation of \(R \). For each \(r \in R \), \((r, 0, \ldots, 0)e_{i1} = (0, \ldots, r, \ldots, 0), \) and hence \(\tau[(r, 0, \ldots, 0)e_{i1}] = \tau(0, \ldots, r, \ldots, 0) \). So we have,

\[(0, \ldots, \tau_i(r), \ldots, 0) = (\tau_i(r), 0, \ldots, 0)e_{i1} + (r, 0, \ldots, 0) \delta_2(1)e_{i1}. \]

Thus, \((0, \ldots, \tau_i(r), \ldots, 0) = (0, \ldots, \tau_i(r), \ldots, 0) \). So \(\tau_i(r) = \tau_i(r) \). Hence, all \(\tau_i \) are equal. Assume that \(\tau_i(1) = a \). So,

\[
\begin{pmatrix}
\delta_{2}(r_{11}) & \cdots & \delta_{2}(r_{1n}) \\
\vdots & \ddots & \vdots \\
0 & \cdots & \delta_{2}(r_{nn})
\end{pmatrix} = \begin{pmatrix}
ar_{11} & \cdots & ar_{1n} \\
\vdots & \ddots & \vdots \\
ar_{n1} & \cdots & ar_{nn}
\end{pmatrix} - \begin{pmatrix}
\delta_{1}(r_{11}) & \cdots & \delta_{1}(r_{1n}) \\
\vdots & \ddots & \vdots \\
0 & \cdots & \delta_{1}(r_{nn})
\end{pmatrix}.
\]

\[
+ \begin{pmatrix}
r_{11}a & \cdots & r_{1n}a \\
\vdots & \ddots & \vdots \\
0 & \cdots & r_{nn}a
\end{pmatrix} + \begin{pmatrix}
\delta_{1}(r_{11}) & \cdots & \delta_{1}(r_{1n}) \\
\vdots & \ddots & \vdots \\
0 & \cdots & \delta_{1}(r_{nn})
\end{pmatrix} = -a I_n \begin{pmatrix}
r_{11} & \cdots & r_{1n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & r_{nn}
\end{pmatrix} + \begin{pmatrix}
r_{11} & \cdots & r_{1n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & r_{nn}
\end{pmatrix} a I_n + (\delta_{1}(r_{ij}))_{i,j}. \]

So if \(d = \begin{pmatrix}
\delta_{1} \\
0
\end{pmatrix} \), then we have

\[
d = \begin{pmatrix}
r_{11} & \cdots & r_{1,n+1} \\
r_{22} & \cdots & r_{2,n+1} \\
0 & \cdots & r_{n+1,n+1}
\end{pmatrix} = \begin{pmatrix}
\tau_{12} & \cdots & \tau_{1,n+1} \\
\vdots & \ddots & \vdots \\
0 & \cdots & \tau_{n+1,n+1}
\end{pmatrix}.
\]
\[
\begin{pmatrix}
\delta_1(r_{11}) & \tau(r_{12}, \cdots, r_{1,n+1}) \\
0 & \begin{pmatrix}
\delta_2(r_{22}) & \cdots & \delta_2(r_{2,n+1}) \\
& \ddots & \ddots \\
& & \delta_2(r_{n+1,n+1})
\end{pmatrix}
\end{pmatrix}
= \\
\begin{pmatrix}
\delta_1(r_{11}) & (r_{12}, \cdots, r_{1,n+1})A + (\delta_1(r_{12}), \cdots, \delta_1(r_{1,n+1})) \\
0 & B^A - A^B + (\delta_1(r_{ij}))_{i,j}
\end{pmatrix}
= \\
I
\begin{pmatrix}
r_{11} & (r_{12}, \cdots, r_{1,n+1}) \\
0 & B
\end{pmatrix},
\]
where \(A = aI_n\) and \(B = \begin{pmatrix}
r_{22} & \cdots & r_{2,n+1} \\
& \ddots & \ddots \\
& & r_{n+1,n+1}
\end{pmatrix}\). Thus, we have,
\[
\Delta(C) = \begin{pmatrix}
\delta_1(r_{11}) & (\delta_1(r_{12}), \cdots, \delta_1(r_{1,n+1})) \\
0 & \begin{pmatrix}
\delta_1(r_{22}) & \cdots & \delta_1(r_{2,n+1}) \\
& \ddots & \ddots \\
& & \delta_1(r_{n+1,n+1})
\end{pmatrix}
\end{pmatrix}
+ \\
I
\begin{pmatrix}
r_{11} & (r_{12}, \cdots, r_{1,n+1}) \\
0 & A
\end{pmatrix} + \begin{pmatrix}
0 & \tau(0,A) \\
0 & I_A
\end{pmatrix}(C) + I_B(C),
\]
where
\[
C = \begin{pmatrix}
r_{11} & (r_{12}, \cdots, r_{1,n+1}) \\
0 & \begin{pmatrix}
r_{22} & \cdots & r_{2,n+1} \\
& \ddots & \ddots \\
& & r_{n+1,n+1}
\end{pmatrix}
\end{pmatrix}.
\]
So, by the mentioned isomorphism, the derivation \(\Delta\) on \(T_{n+1}(R)\) is given by:
\[
\Delta(r_{ij})_{i,j} = (\delta_1(r_{ij}))_{i,j} + I_D(r_{ij})_{i,j},
\]
with \(\delta_1 : R \rightarrow R\) a derivation. So the result follows. \(\square\)
4. Differential polynomial rings of triangular matrix rings

In this section, we study the differential polynomial extension of general-
eralized matrix rings.

In [3], Birkenmeier and Park studied the condition of having a gen-
eralized triangular matrix representation to pass between a ring R and
some of its ring extensions.

If R and S are rings and M is an (R, S)-bimodule, then we provide
a triangular representation of differential polynomial ring $T[\theta; d]$.

Lemma 4.1. Let δ be a derivation of R and $S = R[x; \delta]$.

(I) We consider the ring T and ring homomorphism $\Phi : R \to T$, so
that for each $r \in R$ and an element $y \in T$, $y\Phi(r) = \Phi(r)y + \Phi(\delta(r))$.
In this case, there exists a unique ring homomorphism $\Psi : S \to T$, such
that $\Psi |_{R=} = \Phi$, and $\Psi(x) = y$. Indeed, we have $\Psi(\sum_i r_i x^i) = \sum_i \Phi(r_i)y^i$.

(II) If $S' = R[x'; \delta]$, then there exists a unique ring isomorphism
$\Psi : S \to S'$ with $\Psi(x) = x'$ and $\Psi |_{R}$ is the identity map on R.

Proof. [6, page 10, Exercise 1H].

Proposition 4.2. Let R be a ring, δ_1, I_a and δ be derivations on R
such that $\delta = \delta_1 + I_a$. In this case, we have $R[x; \delta_1] \cong R[\theta; \delta]$. Indeed,
we have $R[\theta; \delta] = R[\theta + a; \delta_1]$.

Proof. We consider the mapping $\phi : R \to R[\theta; \delta]$, where $\phi(r) = r$ and
$y = \theta + a \in R[\theta; \delta]$. In this case, we have, $y\phi(r) = (\theta + a)r = \theta r + ar = \theta r + \delta(r) + ar$
$= r\theta + \delta_1(r) + I_a(r) + ar = r\theta + \delta_1(r) + ra - ar + ar = r(\theta + a) + \delta_1(r) = \phi(r)y + \phi(\delta_1(r))$.

So, by Lemma 4.1, there exists a unique ring homomorphism $\psi : R[x; \delta] \to R[\theta; \delta]$, with $\psi |_{R=} = \phi$. So, for each $r \in R$, $\psi(r) = \phi(r) = r$, and
$\psi(x) = y = \theta + a$, $\psi(\sum_i r_i x^i) = \sum_i r_i(\theta + a)^i$.

Applying Lemma 3.1 on $\phi : R \to R[x; \delta_1]$, with $\phi(r) = r$ and $y = x - a \in R[x; \delta_1]$, we then have,
$y\phi(r) = (x - a)r = xr - ar = rx + \delta_1(r) - ar = rx + \delta_1(r) + ra - ra - ar = r(x - a) + \delta_1(r) + I_a(r) = \phi(r)y + \phi(\delta(r))$.

So, there exists a unique ring homomorphism $\psi' : R[\theta; \delta] \to R[x; \delta_1]$, where $\psi'(r) = \phi(r) = r, r \in R$, and $\psi'(\theta) = y = x - a$, $\psi'(\sum_i r_i \theta^i) = \sum_i r_i(x - a)^i$.
So, we have
\[\psi o \psi' \left(\sum_i r_i (x - a)^i \right) = \psi \left(\sum_i \psi(r_i) \psi(x - a)^i \right) = \sum_i \psi \left(\psi(x - a)^i \right) = \sum_i r_i \psi(x - a). \]

We have \(\psi(x - a) = \theta \) and \(\psi o \psi' = \text{id} \). Similarly, we get \(\psi' o \psi = \text{id} \). Therefore, we have \(R[x; \delta_1] \cong R[\theta; \delta] \). Thus, \(\psi \) is an isomorphism, and hence \(R[\theta; \delta] = R[\theta + a; \delta_1] \). \(\square \)

If \(\delta = I_a \) is an inner derivation on \(R \), then \(\delta = I_0 + I_a \), where \(I_0 \) is the zero derivation on \(R \). By Proposition 4.2, we have \(R[\theta; \delta] = R[\theta + a; I_0] = R[\theta + a] \).

Now, let \(T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \) and \(d \) be a derivation of \(T \). Then, we have, \(d = \tilde{d} + I_A \), where \(\tilde{d} = \begin{pmatrix} \delta_R & \tau \\ 0 & \delta_S \end{pmatrix} \). By Proposition 4.2, we have \(T[\theta; d] \cong T[x; \tilde{d}] \).

Thus, to determine the structure of \(T[\theta; d] \), it is enough to take \(d \) as the derivation induced by a generalized derivation such as \(d = \begin{pmatrix} \delta_R & \tau \\ 0 & \delta_S \end{pmatrix} \).

If \(T \) is a ring with identity and \(e \in T \) is an idempotent such that \(e'Te = 0 \), where \(e' = 1 - e \), then \(R = Te \) and \(S = e'Te \) are subrings of \(T \), and \(M = e'Te' \) is an additive subgroup of \(T \) which is also an \((R, S)\)-bimodule. We have \(e'Te = Te \), \(e'Te' = e'T \), \(e \) and \(e' \) are the identity elements of \(R \) and \(S \), respectively.

Proposition 4.3. Let \(R, S, M, e \) and \(e' \) be as mentioned above. Then, the mapping \(g : T \rightarrow \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \), given by \(g(t) = \begin{pmatrix} te & ete' \\ 0 & e't \end{pmatrix} \), for each \(t \in R \), is a ring isomorphism.

Proof. See [2, Proposition 1.3].

Following Birkenmeier and Park [3], we provide conditions of having a generalized triangular matrix representation of the differential polynomial rings.
Theorem 4.4. Let M be a unitary (R, S)-bimodule and $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the generalized triangular matrix ring and $d : T \to T$ be the derivation induced by the generalized derivation τ with respect to δ_R and δ_S; i.e.,

\[
d \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix}, \text{ for each } r \in R, s \in S, and m \in M.
\]

In this case, we have the isomorphism,

\[
T[\theta; \delta] \cong \begin{pmatrix} R[x; \delta_R] & M[x, y; \tau] \\ 0 & S[y; \delta_S] \end{pmatrix},
\]

where $R[x; \delta_R]$ and $S[y; \delta_S]$ are differential polynomial rings over R and S, and $M[x, y; \tau]$ is an $(R[x; \delta_R], S[y; \delta_S])$-bimodule which satisfying,

I. $M[x, y; \tau]$ contains M as an (R, S)-subbimodule.

II. For each $m \in M$, we have $xm = my + \tau(m)$.

III. Each element $p \in M[x, y; \tau]$ is uniquely written as:

\[
p = m_0 + m_1y + m_2y^2 + \cdots + m_ky^k, \text{ with } m_j \in M, 1 \leq j \leq k \text{ and } y^j \in S[y; \delta_S].
\]

Proof. We have $T \subseteq T[\theta; \delta]$ and that $e = E_{11}, e' = E_{22}$, are idempotents. For each $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \in T$, and each positive integer n,

\[
e'(r \begin{pmatrix} m \\ s \end{pmatrix}) = sE_{22}\theta^nE_{11} = sE_{22}\sum_{k=0}^{n} \binom{n}{k} d^k(E_{11})\theta^{n-k} = sE_{22}E_{11}\theta^n = 0.
\]

So, for each $p \in T[\theta; \delta]$, we have,

\[
e'pe = e'\left(\sum_i \begin{pmatrix} r_i & m_i \\ 0 & s_i \end{pmatrix}\right)\theta^i e = \sum_i e' \begin{pmatrix} r_i & m_i \\ 0 & s_i \end{pmatrix} \theta^i e = 0.
\]

So, we have,

\[
e'T[\theta; \delta]e = 0, \text{ and by Proposition 4.3},
\]

\[
T[\theta; d] \cong \begin{pmatrix} T[\theta; d]e & e'T[\theta; d]e' \\ 0 & e'T[\theta; d] \end{pmatrix}.
\]

So $T[\theta; d]$ is isomorphic to a generalized triangular matrix ring. Next, we show that

\[
T[\theta; d]e \cong R[x; \delta_R], e'T[\theta; d] \cong S[y; \delta_S].
\]

We have the following computations:

\[
\theta e = E_{11} \in T[\theta; d]e, n \geq 0;
\]

\[
\theta^n e = \sum_{k=0}^{n} \binom{n}{k} d^kE_{11}\theta^{n-k} = E_{11}\theta^n = e\theta^n, \text{ and similarly,}
\]

\[
\theta^n e' = e'\theta^n;
\]
\[rE_{11} = E_{11}e \in T[\theta; d]e. \]

So, \(RE_{11} \subseteq T[\theta; d]e. \)

Now, the map \(\Phi : R \to T[\theta; d]e, \) given by \(\Phi(r) = rE_{11}, \) is a ring homomorphism. If \(y = \theta e, \) then we have,

\[y\Phi(r) = \theta E_{11}rE_{11} = \theta rE_{11} = rE_{11}\theta + \delta_R(r)E_{11} = rE_{11}\theta + \delta_R(r)E_{11} = \Phi(r)y + \Phi(\delta_R(r)). \]

So, by Lemma 4.1, there exists a unique ring homomorphism, \(\Psi : R[x; \delta_R] \to T[\theta; d]e \)

such that,

\[\Psi(r) = rE_{11}, \text{ for each } r, \]

\[\Psi(x) = \theta e, \]

\[\Psi(\sum_i r_ix^i) = \sum_i r_iE_{11}(\theta) = \sum_i r_iE_{11}\theta e. \]

Now, we show that \(\Psi \) is a bijection.

Assume that \(\Psi(\sum_i r_ix^i) = 0. \) So, \(\sum_i r_iE_{11}\theta = 0, \) and hence \(\sum_i r_iE_{11}\theta = 0. \) Thus, for each \(i, \)

\[r_iE_{11} = 0 \text{ and hence } r_i = 0, \text{ for each } i. \]

Therefore \(\sum_i r_ix^i = 0, \)

and \(\Psi \) is injective.

Next, let \(pe = (\sum_i \left(\begin{array}{c} r_i \\ m_i \\ s_i \end{array} \right) \theta)E_{11} \in T[\theta; d]e. \) Now, consider the element \(q = \sum_i r_ix^i \in R[x; \delta_R]. \) We have,

\[\Psi(q) = \Psi(\sum_i r_ix^i) = \sum_i r_iE_{11}\theta E_{11} = pe. \]

Therefore, \(\Psi \) is onto and hence \(R[x; \delta_R] \cong T[\theta; d]e. \)

By a similar method we can show that there exists an isomorphism \(\Psi' : S[y; \delta_S] \to e'T[\theta; d], \)

given by \(\Psi'(\sum_j s_jy^j) = \sum_j s_jE_{22}\theta^j, \) and that \(S[y; \delta_S] \cong e'T[\theta; d]. \)

Next, we take \(e'T[\theta; d]e' \) as \(M[x, y; \tau], \) and that \(e'T[\theta; d]e' \) is an \((T[\theta; d], e', e'T[\theta; d]) \)-bimodule. So, by the above isomorphisms, \(M[x, y; \tau] \)

is an \((R[x; \delta_R], S[y; \delta_S]) \)-bimodule, by the following operations:

\[\sum_j r_jx^j(epe') = \Psi(\sum_j r_jx^j)(epe'). \]

So, we have,

\[(\sum_j r_jx^j)(e(e'(\sum_j s_jy^j))) \]

\[= (e(e'(\sum_j s_jy^j)))(\sum_j r_jE_{11}\theta^j) = e(e'pe'). \]

So, we have,

\[(e(e'(\sum_j s_jy^j)))(\sum_j r_jE_{11}\theta^j) = e(e'q' e'). \]

where \(p = \sum_i \left(\begin{array}{c} r_i \\ m_i \\ s_i \end{array} \right) \theta, \)

\[q = \sum_j r_jE_{11}\theta^j e \text{ and } q' = \sum_j s_jE_{22}\theta^j e. \]

So, \(M[x, y; \tau] \) is an \((R, S) \)-bimodule, and for each \(m \in M \)

we have, \(emE_{12} = mE_{12} \in M[x, y; \tau]. \)

Since \(ME_{12} \) is an \((R, S) \)-bimodule, and consider \(M \) as \(mE_{12}, \) then it is
an \((R,S)\)-subbimodule of \(M[x,y;\tau]\). Now, we have,
\[
xm = \theta em = \theta mE_{12} = mE_{12}\theta + \tau(m)E_{12} = mE_{12}E_{22}\theta + \tau(m)E_{12} = me'\theta + \tau(m) = my + \tau(m).
\]
Next, we show that each element \(p \in M[x,y;\tau]\) can be written as \(\sum_{i=0}^{k} m_i y^i\) with \(m_i \in M\). We have,
\[
p = E_{11}(\sum_{i=0}^{k} \begin{pmatrix} r_i & m_i \\ 0 & s_i \end{pmatrix})\theta^i E_{22} = \sum_{i=0}^{k} E_{11} \begin{pmatrix} r_i & m_i \\ 0 & s_i \end{pmatrix} E_{22}\theta^i = \sum_{i=0}^{k} m_i E_{12} \theta^i = \sum_{i=0}^{k} m_i E_{12} E_{22}\theta^i = \sum_{i=0}^{k} m_i (e'\theta)^i = \sum_{i=0}^{k} m_i y^i.
\]
Now, to show the uniqueness, it is enough to see that, if \(\sum_{i=0}^{k} m_i y^i = 0\), then \(m_i = 0\) for each \(i\). So, we have,
\[
0 = \sum_{i=0}^{k} m_i E_{12}(e'\theta)^i = \sum_{i=0}^{k} m_i E_{12}\theta^i.\]
So, we have, \(m_i E_{12} = 0\). Thus, for each \(i\), \(m_i = 0\). Therefore, each element \(p \in M[x,y;\tau]\) can be written as \(\sum_{i=0}^{k} m_i y^i\) with \(m_i \in M\). Now, if we consider the identity mapping \(id : M[x,y;\tau] \rightarrow M[x,y;\tau]\), then we have,
\[
(\sum_{i=0}^{k} m_i y^i) = (\sum_{i=0}^{k} m_i E_{12} \theta^i) = (\sum_{i=0}^{k} m_i E_{12} E_{22} \theta^i) = (\sum_{i=0}^{k} m_i (e'\theta)^i) = (\sum_{i=0}^{k} m_i y^i).
\]
Notice that, by the isomorphism mentioned in Theorem 4.4, the element \(\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}\) is mapped to \(\begin{pmatrix} \delta e & 0 \\ 0 & e' \theta \end{pmatrix}\) and \(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix}\) to \(\begin{pmatrix} rE_{11} & mE_{12} \\ 0 & sE_{22} \end{pmatrix}\). Therefore in the isomorphism mentioned in Theorem 4.4, \(\theta\) is corresponds to \(\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}\) and the isomorphism restricted to \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}\) is the identity.

Theorem 4.5. Let \(M\) be a unitary \((R,S)\)-bimodule, \(\delta_R : R \rightarrow R\), \(\delta_S : S \rightarrow S\) be derivations, \(\tau : M \rightarrow M\) be a generalized derivation and \(M[x,y;\tau]\) be as in Theorem 4.4. Let \(N\) be a unitary \((R[x;\delta_R],S[y;\delta_S])\)-bimodule and \(\phi : M \rightarrow N\) be an \((R,S)\)-homomorphism such that for
each \(m \in M \), \(x\phi(m) = \phi(m)y + \phi_0(m) \). Then, there exists a unique \((R[x;\delta_R], S[y;\delta_S])\)-bimodule homomorphism \(\Phi : M[x, y; \tau] \to N \) such that \(\Phi |_M = \phi \).

Proof. Define \(\varphi : \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \to \begin{pmatrix} R[x;\delta_R] & N \\ 0 & S[y;\delta_S] \end{pmatrix} \), given by

\[
\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \mapsto \begin{pmatrix} r & \phi(m) \\ 0 & s \end{pmatrix}.
\]

We have that \(\phi : M \to N \) is a generalized module homomorphism related to \(i_R : R \to R[x;\delta_R] \), and \(i_S : S \to S[x;\delta_S] \) with \(i_R(r) = r, i_S(s) = s \), for each \(r \in R \) and \(s \in S \).

So, \(\varphi \) is a ring homomorphism and \(
\begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \end{pmatrix}
\) \(\in \begin{pmatrix} R[x;\delta_R] & N \\ 0 & S[y;\delta_S] \end{pmatrix} \).

We have,

\[
\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \varphi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \begin{pmatrix} r & \phi(m) \\ 0 & s \end{pmatrix} = \begin{pmatrix} rx + \delta_R(r) \phi(m)y + \phi(\tau(m)) \\ 0 & sy + \delta_S(s) \end{pmatrix} + \varphi \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix} + \varphi d \begin{pmatrix} r & m \\ 0 & s \end{pmatrix},
\]

where \(d \) is the derivation induced by \(\tau \) on \(\begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \) and

\[
d \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} \delta_R(r) & \tau(m) \\ 0 & \delta_S(s) \end{pmatrix}.
\]

So, by Lemma 4.1, and the isomorphism in Theorem 4.4, we have the unique ring homomorphism defined as:

\[
\psi : \begin{pmatrix} R[x;\delta_R] & M[x, y; \tau] \\ 0 & S[y;\delta_S] \end{pmatrix} \to \begin{pmatrix} R[x;\delta_R] & N \\ 0 & S[y;\delta_S] \end{pmatrix},
\]

such that \(\psi |_M = \varphi \), and \(\psi \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \). So, we have,

\[
\psi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \varphi \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} r & \phi(m) \\ 0 & s \end{pmatrix},
\]

and hence

\(\psi(rE_{11}) = E_{11}, \psi(E_{22}) = E_{22} \). So, by Proposition 2.4, \(\psi \) can be given by:
ψ = \(\begin{pmatrix} \varphi_1 & \Phi \\ 0 & \varphi_2 \end{pmatrix} \),

where \(\varphi_1 : R[x; \delta_R] \rightarrow R[x; \delta_R] \) and \(\varphi_2 : S[y; \delta_S] \rightarrow S[y; \delta_S] \) are ring homomorphisms and \(\Phi : M[x, y; \tau] \rightarrow N \) is the generalized module homomorphism related to \((\varphi_1, \varphi_2) \). We have,

\[
\psi(r E_{11}) = \varphi_1(r) E_{11} = r E_{11} \quad \text{and} \quad \psi(s E_{22}) = \varphi_2(s) E_{22} = s E_{22}.
\]

We have that \(\varphi_1 : R[x; \delta_R] \rightarrow R[x; \delta_R] \) is a ring homomorphism such that \(\varphi_1(R) \subseteq R \) and \(\varphi_1(x) = x \). So, by Lemma 4.1 and the uniqueness, \(\varphi \) must be the identity, and by a similar argument \(\varphi_2 : S[y; \delta_S] \rightarrow S[y; \delta_S] \) is also the identity. Hence, we have,

\[
\Phi(q_1 p) = \varphi_1(q_1) \Phi(p) = q_1 \Phi(p), \quad \text{and} \quad \Phi(p q_2) = \Phi(p) \varphi_2(q_2) = \Phi(p) q_2,
\]

for \(q_1 \in R[x; \delta_R], \ q_2 \in S[y; \delta_S] \) and \(p \in M[x, y; \tau] \). So, \(\Phi \) is a \((R[x; \delta_R], S[y; \delta_S]) \)-bimodule homomorphism and we have,

\[
\psi(m E_{12}) = \Phi(m) E_{12}.
\]

Therefore, \(\Phi|_M = \phi \). Now if \(\Phi' : M[x, y; \tau] \rightarrow N \)

is an \((R[x; \delta_R], S[y; \delta_S]) \)-bimodule homomorphism such that \(\Phi'|_M = \phi \).

Then, we consider the following mapping,

\[
\psi' : \begin{pmatrix} R[x; \delta_R] & M[x, y; \tau] \\ 0 & S[y; \delta_S] \end{pmatrix} \rightarrow \begin{pmatrix} R[x; \delta_R] & N \\ 0 & S[y; \delta_S] \end{pmatrix},
\]

given by \(\psi'(\begin{pmatrix} q_1 & p \\ 0 & q_2 \end{pmatrix}) = \begin{pmatrix} q_1 & \Phi'(p) \\ 0 & q_2 \end{pmatrix} \).

In this case, \(\psi' \) is a ring homomorphism and

\[
\psi'(\begin{pmatrix} r & m \\ 0 & s \end{pmatrix}) = \begin{pmatrix} r & \phi(m) \\ 0 & s \end{pmatrix}, \quad \psi'(\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}) = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}.
\]

So, by the uniqueness of \(\psi \) we must have \(\psi' = \psi \), and hence \(\Phi' = \Phi \).

Therefore, \(\Phi \) is unique. \(\square \)

Corollary 4.6. Let \(M \) be a unitary \((R, S)\)-bimodule, \(\delta_R : R \rightarrow R, \delta_S : S \rightarrow S \) be derivations and \(\tau : M \rightarrow M \) be a \((\delta_R, \delta_S)\)-generalized derivation and \(M[x, y; \tau] = (R[x; \delta_R], S[y; \delta_S]) \)-bimodule satisfying conditions in Theorem 4.4. Then, there exists a unique \((R[x; \delta_R], S[y; \delta_S])\)-bimodule isomorphism,

\[
\Lambda : M[x, y; \tau] \rightarrow M[x, y; \tau]',
\]

such that \(\Lambda|_M = I_M \), where \(I_M \) is the identity mapping of \(M \).

Proof. Consider \(\phi : M \rightarrow M[x, y; \tau] \), with \(\phi(m) = m \) for each \(m \in M \).

Then, \(\phi \) is an \((R, S)\)-bimodule homomorphism such that

\[
x \phi(m) = x m = m y + \tau(m) = \phi(m) y + \phi \tau(m).
\]

So, \(\phi \) satisfies the conditions of Theorem 4.5, and hence there exists a unique
By the proof of Corollary 4.6, we observe that the bimodule isomorphism Λ is defined by:

$$\Lambda(m_0 + m_1 y + \cdots + m_k y_k) = m_0 + m_1 y + \cdots + m_k y_k.$$

We also observe that the bimodule $M[x, y; \tau]$ in Corollary 4.6, is unique up to isomorphism. Therefore, we can define the following definition.

Definition 4.7. Let M be a unitary (R, S)-bimodule, $\delta_R : R \to R$, $\delta_S : S \to S$ be derivations and $\tau : M \to M$ be a (δ_R, δ_S)-generalized derivation. We define $M[x, y; \tau]$ as:

I. $M[x, y; \tau]$ is a unitary $(R[x; \delta_R], S[y; \delta_S])$-bimodule, which contains M as an (R, S)-subbimodule.

II. For each $m \in M$, we have $xm = my + \tau(m)$.

III. Each element of $p \in M[x, y; \tau]$ is uniquely written as:

$$p = m_0 + m_1 y + \cdots + m_k y_k,$$

with $m_j \in M$, $y^j \in S[y; \delta_S]$, $1 \leq j \leq k$.

If the module $M[x, y; \tau]$ exists, then by Corollary 4.6, it is unique up to isomorphism and is called the module of differential polynomials over $R M S$.

By Theorem 4.4, for each (R, S)-bimodule M and generalized derivation τ on M, the module $M[x, y; \tau]$ exists.

Let R be a ring and $\delta : R \to R$ a derivation. Consider R as an (R, R)-bimodule. Then, the differential polynomial module $R[x; x; \delta]$, is an $(R[x; \delta], R[x; \delta])$-bimodule, and satisfies the conditions in Definition 4.7. On the other hand, $R[x; \delta]$ as $(R[x; \delta], R[x; \delta])$-bimodule, satisfies the conditions in Definition 4.7, and so $R[x, x; \delta]$ is isomorphic to $R[x; \delta]$, as $(R[x; \delta], R[x; \delta])$-bimodule, by Corollary 4.6.
Differential polynomial rings of triangular matrix rings

Some properties of the module of differential polynomials are similar to those of the ring of differential polynomials, such as what follows next.

Lemma 4.8. Let $M[x, y; \tau]$ be the module of differential polynomials. Then, for each $m \in M$ we have,

$$x^k m = \sum_{i=0}^{k} \binom{k}{i} \tau^i(m) y^{k-i},$$

for each $x^k \in R[x; \delta_R]$, $m \in M$, $\tau^0(m) = m$, and $k \geq 0$.

Proof. We proceed by induction on k. If $k = 1$, then $xm = my + \tau(m) = \sum_{i=0}^{1} \binom{1}{i} \tau^i(m) y^{1-i},$

Assume that the result is true for $k \leq n$. Now, we have,

$$x^{n+1} m = x^n(xm) = x^n(my + \tau(m)) = x^nm + x^n\tau(m) = \sum_{i=0}^{n} \binom{n}{i} \tau^i(m)y^{n-i}y + \sum_{i=0}^{n} \binom{n}{i} \tau^i(\tau(m))y^{n-i} = my^{n+1} + \sum_{i=0}^{n} \binom{n}{i} \tau(m)y^{n-i},$$

$$\cdots + \tau^{n+1} = my^{n+1} + \sum_{i=0}^{n+1} \binom{n+1}{i} \tau(m)y^{n+1-i}.$$

□

Acknowledgment

The authors are thankful to the referee for his careful reading of the paper and for some helpful comments and suggestions.

References

Hoger Ghahramani

A. Moussavi

Department of Mathematics, Tarbiat Modares University, Tehran, Iran, P.O. Box:14115-170.

Email: hoger.gh@yahoo.com

Email: moussavi.a5@yahoo.com