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COMPARISON RESULTS ON THE PRECONDITIONED

MIXED-TYPE SPLITTING ITERATIVE METHOD FOR

M-MATRIX LINEAR SYSTEMS
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Communicated by Heydar Radjavi

Abstract. Consider the linear system Ax = b where the coeffi-
cient matrix A is an M-matrix. Here, it is proved that the rate of
convergence of the Gauss-Seidel method is faster than the mixed-
type splitting and AOR (SOR) iterative methods for solving M-
matrix linear systems. Furthermore, we improve the rate of con-
vergence of the mixed-type splitting iterative method by applying
a preconditioned matrix. Comparison theorems show that the rate
of convergence of the preconditioned Gauss-Seidel method is faster
than the preconditioned mixed-type splitting and AOR (SOR) it-
erative methods. Finally, some numerical examples are presented
to illustrate the reality of our results.

1. Introduction

Consider the iterative solution of the linear system

(1.1) Ax = b,

where x, b ∈ Rn and A ∈ Rn×n is a nonsingular matrix with nonzero
diagonal elements.
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A basic iterative method for solving linear system (1.1) is defined by
means of the splitting A = M − N, where M is a nonsingular matrix.
The approximate solution x(k+1) is generated as follows:

x(k+1) = M−1Nx(k) +M−1b, k = 0, 1, 2, ... .

Or equivalently,

(1.2) x(k+1) = V x(k) +M−1b, k = 0, 1, 2, ...,

where the starting vector x(0) is given and V = M−1N is called the
iteration matrix. The iterative method (1.2) is convergent to the unique

solution x = A−1b for each x(0) if and only if ρ(V ) < 1. The convergence
analysis of the iterative method (1.2) is based on the spectral radius of
the iteration matrix V, i.e., ρ(V ). For large values of k, at each step, the
corresponding error decreases in magnitude approximately by a factor
of ρ(V ). That is, the smaller ρ(V ) is the quicker the convergence is.

Definition 1.1. (Varga [13]). Let A = M − N be an arbitrary split-
ting for the matrix A and ρ1 = ρ(M−1N) be the spectral radius of the
iteration matrix based on the above splitting. The asymptotic rate of the
convergence is defined by R∞ = − ln ρ1.

Here, we shall consider the following decomposition for a given matrix
A,

A = D − L− U,
where D is a nonsingular diagonal matrix, L and U are strictly lower
and upper triangular matrices, respectively.
The classical iterative methods are defined as follows.

The Jacobi method (J):

MJ = D, NJ = L+ U and TJ = D−1(L+ U).

The Gauss-Seidel method (GS):

MG = D − L, NG = U and TG = (D − L)−1U.

Definition 1.2. (Berman and Plemmons [2]). A ∈ Rn×n is called a
Z-matrix if aij ≤ 0, for i, j=1, 2, 3,...,n (i 6= j).

Definition 1.3. (Berman and Plemmons [2]). Let A be a Z-matrix with
positive diagonal elements. Then, the matrix A is called an M-matrix if
A is nonsingular and A−1 ≥ 0.
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Definition 1.4. (Varga [13]). A matrix is said to be reducible if there
is a permutation matrix P such that PAP T is a block upper triangular
matrix. Otherwise, it is irreducible.

Theorem 1.5. Let G ≥ 0 be an n× n irreducible matrix. Then, we
have the followings:
(1) G has a positive real eigenvalue which is equal to its spectral radius.
(2) There exists an eigenvector x > 0 corresponding to the spectral radius
of G.
(3) ρ(G) is a simple eigenvalue of G.

Proof. See [13]. �

Theorem 1.6. Let G be a nonnegative matrix. Then, we have the
followings:
(1) If αx ≤ Gx, for some nonnegative vector x 6= 0, then α ≤ ρ(G).
(2) If Gx ≤ βx, for some nonnegative vector x 6= 0, then ρ(G) ≤ β.
Moreover, if G is irreducible and if 0 6= αx ≤ Gx ≤ βx, αx 6= Gx and
Gx 6= βx, for some nonnegative vector x, then α < ρ(G) < β and x is a
positive vector.

Proof. See [2]. �

Definition 1.7. (Woznicki [14]). The splitting A = M −N is called
(1) a regular splitting of A if M−1 ≥ 0 and N ≥ 0 ,
(2) a nonnegative splitting of A if M−1 ≥ 0, M−1N ≥ 0 and NM−1 ≥
0,
(3) a weak nonnegative splitting of A if M−1 ≥ 0 and either M−1N ≥ 0
or NM−1 ≥ 0,
(4) a convergent splitting of A if ρ(M−1N) < 1.

Theorem 1.8. Let A = M − N be a regular splitting of A. Then,
ρ(M−1N) < 1 if and only if A is nonsingular and A−1 is nonnegative.

Proof. See [13]. �

Theorem 1.9. Let A be a Z-matrix with positive diagonal elements.
Then, A is an M-matrix if and only if ρ(TJ) < 1.

Proof. See [2]. �

The Mixed-type splitting iterative method is given as follows; for more
details, see [3, 9, 10].
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Mixed-type splitting iterative method:

(D +D1 + L1 − L)x(k+1) = (D1 + L1 + U)x(k) + b, k = 0, 1, 2, ... .
Therefore, the iteration matrix of the mixed-type splitting iterative
method is defined by

T = (D +D1 + L1 − L)−1(D1 + L1 + U),

where D1 is an auxiliary nonnegative diagonal matrix, L1 is an auxiliary
strictly lower triangular matrix and 0 ≤ L1 ≤ L.

Classical SOR and AOR methods are special cases of the mixed-type
splitting iterative method and are defined by the following choices of D1

and L1.

1. The SOR method:

D1 = 1
ω (1− ω)D, L1 = 0,

Tω = (D − ωL)−1[(1− ω)D + ωU ].

2. The AOR method:

D1 = 1
ω (1− ω)D, L1 = 1

ω (ω − r)L,
Tr,ω = (D − rL)−1[(1− ω)D + (ω − r)L+ ωU ],

where ω and r are real parameters with 0 ≤ r ≤ ω < 1 and ω 6= 0.

Theorem 1.10. Let A = M1 − N1 = M2 − N2 be two weak nonneg-
ative splittings of A, where A−1 ≥ 0. If N2 ≥ N1, then ρ(M−11 N1) ≤
ρ(M−12 N2).

Proof. See [15]. �

Theorem 1.11. Let A = M1−N1 = M2−N2 be two weak nonnegative
splittings of A, where A−1 ≥ 0. If M−11 ≥ M−12 , then ρ(M−11 N1) ≤
ρ(M−12 N2).

Proof. See [15]. �

Theorem 1.12. Let B be a nonnegative matrix. Then, ρ(B) < 1 if and
only if I −B is nonsingular and (I −B)−1 is nonnegative.

Proof. See [2]. �

Proposition 1.13. If A−1 ≥ 0 and A = M −N is a weak nonnegative
splitting for the matrix A, then ρ(M−1N) = ρ(NM−1) < 1.
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Proof. Assume that σ(B) shows the set of eigenvalues of an arbitrary
matrix B. Clearly, σ(M−1N) = σ(NM−1). Without loss of generality,
assume that M−1N ≥ 0. Now, the result can be concluded by Theorem
1.12 and the following relation,
A = M(I −M−1N). �

The reminder of our work is organized as follows. In Section 2, some
comparison results are established. Also, it is proved that the Gauss-
Seidel method converges faster than the mixed-type splitting (AOR,
SOR) iterative methods. Moreover, we improve the rate of convergence
of the mixed-type splitting iterative method by applying a precondi-
tioned matrix, in Section 3. In Section 4, some numerical examples are
presented to illustrate the results established here. Finally, we conclude
in Section 5 .

2. Comparison theorems

In this section, some comparison theorems are proved when the co-
efficient matrix A in (1.1) is a nonsingular M-matrix. First of all, it is
shown that the mixed-type splitting is a regular convergent splitting for
the matrix A. Then, we compare the spectral radii of the Gauss-Seidel
splitting with the mixed-type, AOR and SOR splittings, respectively.

The AOR iterative method is given by

(D− rL)x(k+1) = [(1− ω)D+ (ω − r)L+ ωU ]x(k) + ωb, k = 0, 1, 2, ...,

with the iteration matrix

Tr,ω = (D − rL)−1[(1− ω)D + (ω − r)L+ ωU ],

where ω and r are real parameters with 0 ≤ r ≤ ω < 1 and ω 6= 0.
Note that the classical SOR method is a special case of the AOR

method with r = ω.

Theorem 2.1. Suppose that A and B are two square matrices which
satisfy the inequalities 0 ≤ A ≤ B. Then, ρ(A) ≤ ρ(B).

Proof. See [13]. �

Theorem 2.2. If A is an M-matrix, D1 ≥ 0 and 0 ≤ L1 ≤ L, then the
mixed-type splitting is a convergent regular splitting.
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Proof. It is known that the mixed-type splitting for the matrix A is
defined by

M = D +D1 + L1 − L, N = D1 + L1 + U.

The matrix A is an M-matrix, and so Theorem 1.9 implies that the
Jacobi splitting for the matrix A is convergent. It is easy to show that

0 ≤ (D +D1)
−1(L− L1) ≤ D−1(L+ U).

From Theorem 2.1, we can conclude that the Jacobi splitting of the
matrix M is convergent, and hence Theorem 1.9 implies that M−1 ≥ 0.
Therefore, the result follows immediately from Theorem 1.8. �

Corollary 2.3. Let A be an M-matrix and 0 ≤ r ≤ ω < 1, ω 6= 0. Then,
the SOR and AOR splittings are convergent.

Proof. For the SOR method, the result follows from Theorem 2.2 with
D1 = 1

ω (1 − ω)D and L1 = 0. By considering D1 = 1
ω (1 − ω)D and

L1 = 1
ω (ω − r)L, Theorem 2.2 implies that the AOR method is also

convergent. �

In the following two theorems, the authors have assumed that the
matrix A is a Z-matrix with positive diagonal elements. It has been
established that in the case that the AOR (SOR) is a convergent method,
the speed of convergence of the mixed-type splitting iterative method is
faster than the speed of convergence of the AOR (SOR) method. We
only state the theorems without proof; for more details, see [3].

Theorem 2.4. Suppose that A is the coefficient matrix of the linear
system (1.1). Let A be a Z-matrix with positive diagonal elements and

0 ≤ D1 ≤ (
1

ω
− 1)D, 0 ≤ L1 ≤ (1− r

ω
)L.

Moreover, assume that the matrices T and Tr,ω are the mixed-type split-
ting and AOR iteration matrices, respectively, where 0 < r < ω < 1. If
T and Tr,ω are irreducible, then

(1)ρ(T ) < ρ(Tr,ω), if ρ(Tr,ω) < 1,
(2)ρ(T ) = ρ(Tr,ω), if ρ(Tr,ω) = 1,
(3)ρ(T ) > ρ(Tr,ω), if ρ(Tr,ω) > 1.

Theorem 2.5. Suppose that A is the coefficient matrix of the linear
system (1.1). Let A be a Z-matrix with positive diagonal elements and

0 ≤ D1 ≤ (
1

ω
− 1)D, L1 = 0.



Comparison results on the preconditioned mixed-type splitting 355

Moreover, assume that the matrices T and Tω are the mixed-type splitting
and SOR iteration matrices, respectively, where 0 < ω < 1. If T and Tω
are irreducible, then

(1)ρ(T ) < ρ(Tω), if ρ(Tω) < 1,
(2)ρ(T ) = ρ(Tω), if ρ(Tω) = 1,
(3)ρ(T ) > ρ(Tω), if ρ(Tω) > 1.

Proposition 2.6. Let A be a Z-matrix with positive diagonal elements.
Assume that 0 ≤ r ≤ ω < 1, ω 6= 0. Then, the AOR (SOR, 0 < ω ≤ 1,
or mixed-type) splitting is a convergent splitting for the matrix A if and
only if A is an M-matrix.

Proof. It is easy to see that the AOR (SOR or mixed-type) splitting
is a regular splitting for the matrix A. Suppose that the AOR (SOR
or mixed-type) splitting is a convergent splitting. Hence, Theorem 1.8
implies that A is an M-matrix.

Conversely, let A be an M-matrix. Theorem 1.9 implies that the
Jacobi splitting is a convergent splitting for the matrix A, i.e., ρ(TJ) < 1.
Evidently, the spectral radius of the iteration matrix of the AOR (SOR
or mixed-type) method is smaller than the one corresponding to the
Jacobi method. Hence, the result follows immediately from Theorem
1.10 . �

Note that the Gauss-Seidel splitting is a special case of the SOR
splitting with ω = 1. Hence, Proposition 2.6 implies that the Gauss-
Seidel splitting is a convergent splitting for an M-matrix.

Our aim is to show that if the AOR (SOR, mixed-type) method is
a convergent method, then the Gauss-Seidel method converges faster
than the AOR (SOR, mixed-type) method. On the other hand, it has
been proved in Theorem 2.6 that if the AOR (SOR, mixed-type) is
a convergent splitting for a given Z-matrix A, with positive diagonal
elements, then the matrix A is an M-matrix. Hence, in the following we
only consider M-matrix linear systems.

Theorem 2.7. Let A be an M-matrix. Suppose that TG and Tr,ω are
the Gauss-Seidel and AOR iteration matrices, respectively, where 0 ≤
r ≤ ω < 1, ω 6= 0. If TG and Tr,ω are irreducible, then

ρ(TG) < ρ(Tr,ω).

Proof. It is clear that TG = (D − L)−1U ≥ 0. Hence, by Theorem 1.5,
there exists a positive vector x such that

(2.1) TGx = (D − L)−1Ux = ρ(TG)x.
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Straightforward computations show that

Tr,ωx− TGx = (D − rL)−1((1− ω)D + (ω − r)L+ ωU)x− ρ(TG)x

= (D − rL)−1[(1− ω)D + (ω − r)L
+ωU − ρ(TG)(D − rL)]x.

By computing Ux from (2.1) and substituting in the above equation, we
have

(2.2) Tr,ωx− ρ(TG)x = (1− ρ(TG))(D − rL)−1[(1− ω)D + (ω − r)L].

Evidently, Theorem 1.8 implies that ρ(TG) < 1. It is easy to see that

(D − rL)−1[(1− ω)D + (ω − r)L] ≥ 0,

but it is not equal to zero, and therefore the relation (2.2) implies that
Tr,ωx ≥ ρ(TG)x. Now, the result follows from Theorem 1.6 immediately.

�

As said earlier, the SOR method is a special case of the AOR method,
and hence we can conclude the following corollary immediately.

Corollary 2.8. Let A be an M-matrix. Suppose that TG and Tω are the
Gauss-Seidel and SOR iteration matrices, respectively, where 0 < ω < 1.
If TG and Tω are irreducible, then ρ(TG) < ρ(Tω).

Theorem 2.9. Let A be an M-matrix, D1 ≥ 0 and 0 ≤ L1 ≤ L. Suppose
that TG and T are the mixed-type splitting and Gauss-Seidel iteration
matrices, respectively. If TG and T are irreducible, then ρ(TG) < ρ(T ).

Proof. By Theorem 1.5, there exists a positive vector x such that TGx =
ρ(TG)x. From Theorem 2.2, we conclude that T is a positive matrix:

Tx− TGx = (D +D1 + L1 − L)−1(D1 + L1 + U)x− ρ(TG)x
= (1− ρ(TG))(D +D1 + L1 − L)−1(D1 + L1)x.

Since A is an M-matrix, by Proposition 1.13, it can be easily found that
ρ(TG) < 1. Evidently,

(D +D1 + L1 − L)−1(D1 + L1) ≥ 0.

Therefore, the result follows from Theorem 1.6. �

Remark 2.10. If T, TG, Tω and Tr,ω are reducible matrices, then theo-
rems 2.4, 2.5, 2.7, Corollary 2.8 and Theorem 2.9 still hold when “ < ”
changes to “ ≤ ”.
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3. Improving the mixed-type splitting method

Here, we shall consider the iterative methods for solving the linear
system of equations Ax = b, where A is an M-matrix (M-matrix linear
systems).

In order to improve the rate of convergence of the iterative methods
for solving the linear system (1.1), several researchers applied one step
or even more than one step of elimination methods. For more details
in the case of one elimination, see [5, 6, 7, 8, 11, 12] and in the case of
more than one elimination step, see [1].

In the present section, we consider the preconditioned matrix, in-
troduced by the relation (3.1), to eliminate the first column below the
diagonal of the matrix A. Then, the iterative methods, discussed in this
paper, are employed. It is established that our approach leads to an
improvement of the rate of convergence of the mixed-type, AOR, SOR
and Gauss-Seidel iterative methods.

Consider the following preconditioned linear system,

Ax = b,

where A = (I + S)A and b = (I + S)b with

S =


0 0 · · · 0
−a21

a11
0 · · · 0

...
...

. . .
...

−an1
a11

0 · · · 0


n×n

.

The matrix P = (I + S) is called the preconditioned matrix.
The iterative methods defined by considering the classical iterative

methods on A is called preconditioned iterative methods. Furthermore,
it is proved that the rate of convergence of the preconditioned Gauss-
Seidel method is faster than the preconditioned AOR, preconditioned
SOR and preconditioned mixed-type splitting iterative methods. At the
end of this section, it is shown that more than one elimination step can
be applied to get methods with even smaller spectral radii.
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Lemma 3.1. Let A = [aij ] ∈ Rn×n, n ≥ 2 be an M-matrix, and suppose
that

(3.1) P =


1 0 · · · 0
−a21

a11
1 0

...
. . .

...
−an1

a11
0 · · · 1


n×n

.

Then, the matrices A = PA and A1, obtained from A by deleting its
first row and column, are M matrices.

Proof. See [4]. �

Assume that

E1 = D +D1 + L1 − L, F1 = D1 + L1 + U,

where D is a nonsingular diagonal matrix, L and U are strictly lower
and upper triangular matrices, respectively, such that A = D − L− U .

We shall consider the special cases of the mixed-type and precondi-
tioned mixed-type splittings which

(3.2) D1 = αD, D1 = αD, L1 = βL and L1 = βL,

where 0 ≤ α, β ≤ 1.
Since A is an M-matrix, from Lemma 3.1, we deduce that A is an

M-matrix. It can be easily shown that D1 ≤ D1. Also, it is clear that
D,D1, L, L1 and U are positive matrices.

Now, by the following theorem, it is proved that the rate of con-
vergence of the preconditioned mixed-type splitting iterative method is
faster than the mixed-type splitting iterative method for D1, D1, L1, L1,
which satisfy in (3.2).

Theorem 3.2. Suppose that A is an M-matrix. Furthermore, assume
that T and T = E−11 F1 are the iteration matrices of the mixed-type and

preconditioned mixed-type splittings, respectively. Then, ρ(T ) ≤ ρ(T ).

Proof. Consider the mixed-type splitting for the matrix A, i.e., A =
M −N, where,

M = D +D1 + L1 − L, N = D1 + L1 + U.

By Theorem 2.2, it is known that M −N define a regular splitting for
the matrix A. Also, it is easy to show that E1−F1 is a regular splitting
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for the matrix A. Now, consider the following splitting for the matrix
A,

M1 = (I + S)−1E1, N1 = (I + S)−1F1.

We can easily see that M1 −N1 defines a weak nonnegative splitting
for the matrix A. Obviously L ≥ L ≥ 0 and E1 ≤ M . By some easy
computation, we get

E−11 −M
−1 = E−11 (M − E1)M

−1.

Clearly, E−11 ≥ M−1 and M−1 ≤ E−11 ≤ E−11 (I + S) = M−11 . Now, the
result follows immediately from Theorem 1.11 . �

It is obvious that the (preconditioned) Gauss-Seidel, SOR and AOR
iterative methods are special cases of the (preconditioned) mixed-type
splitting iterative method. Hence, we can conclude the following Corol-
laries from Theorem 3.2 by setting different values of the parameters α
and β in the relation (3.2).

Corollary 3.3. Suppose that A is an M-matrix and 0 ≤ r ≤ ω <
1, ω 6= 0 . Furthermore, assume that Tr,ω and T r,ω are the iteration
matrices of the AOR and preconditioned AOR splittings, respectively.
Then, ρ(T r,ω) ≤ ρ(Tr,ω).

Proof. We can conclude the result from Theorem 3.2, by setting α =
1
ω (1− ω) and β = 1

ω (ω − r) �

It is well known that (preconditioned) SOR method is a special case
of the (preconditioned) AOR method when r = ω. Therefore, we can
deduce the following Corollary from Corollary 3.3.

Corollary 3.4. Suppose that A is an M-matrix and 0 < ω < 1. Fur-
thermore, assume that Tω and Tω are the iteration matrices of the SOR
and preconditioned SOR splittings, respectively. Then, ρ(Tω) ≤ ρ(Tω).

Corollary 3.5. Suppose that A is an M-matrix. Furthermore, assume
that TG and TG are the iteration matrices of the Gauss-Seidel and pre-
conditioned Gauss-Seidel splittings, respectively. Then, ρ(TG) ≤ ρ(TG).

Proof. We can conclude the result from Theorem 3.2, by setting α =
β = 0 in (3.2). �
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Remark 3.6. Lemma 3.1, shows that A is an M-matrix. Hence, The-
orem 2.8 implies that the preconditioned Gauss-Seidel method converges
faster than the preconditioned mixed-type splitting, preconditioned AOR
and preconditioned SOR iterative methods.

Theorem 3.7. Suppose that A is a Z-matrix with positive diagonal
elements. Moreover, assume that the Jacobi splitting is a convergent
splitting for the matrix A. Then, the Jacobi splitting for each principal
submatrix of the matrix A is convergent.

Proof. Assume that A = [aij ]n×n is a Z-matrix, where aii > 0 for
i = 1, 2, ..., n. Furthermore, suppose that the Jacobi splitting for A

is convergent, i.e., ρ(M−1J NJ) < 1 where A = MJ −NJ . Let Â be an ar-
bitrary principal submatrix of the matrix A. Without loss of generality,
we may assume that

Â =

 aii · · · aij
...

...
aji · · · ajj

 .

Consider the block diagonal matrix P = diag{D, Â,D}, where D =
diag{a11, a22, . . . , ai−1,i−1} and D = diag{aj+1,j+1, ..., ann}. Suppose

that Â = M̂J − N̂J and P = M1 − N1 are the Jacobi splittings for

Â and P, respectively.
It is clear that, 0 ≤ M−11 N1 ≤ M−1J NJ . Hence, Theorem 2.1 implies

that ρ(M−11 N1) < 1. Now, we can easily see that ρ(M̂−1J N̂J) < 1. �

The following Corollary is a result of Theorem 3.7. Also, it has been
established by Varga[13], separately.

Corollary 3.8. Suppose that A is an M-matrix. Then, each principal
submatrix of the matrix A is an M-matrix.

Theorem 3.9. Let A = [aij ]n×n be an M-matrix. Then, for each 1 ≤
k ≤ n the matrix A(k) obtained from A after performing k step(s) of
Gauss elimination is an M-matrix.

Proof. For k = 1 the result follows from Lemma 3.1 . For k > 1, assume
that A(k) is an M-matrix obtained from A after applying k steps of Gauss
elimination. The matrix A(k) has the following form

A(k) =

(
A

(k)
11 A

(k)
12

0 A
(k)
22

)
,
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where A
(k)
11 is a k×k upper triangular matrix and A

(k)
22 is a (n−k)×(n−k)

matrix.
By Corollary 3.8, A

(k)
11 and A

(k)
22 are M-matrices. Evidently, applying

the (k+ 1)th step of the Gauss elimination on the matrix A(k) is equiv-
alent to applying the first step of the Gauss elimination on the matrix

A
(k)
22 . The matrix A(k+1) has the following form

A(k+1) =

(
A

(k)
11 A

(k)
12

0 A
(k+1)
22

)
.

By Lemma 3.1, A
(k+1)
22 is an M-matrix. On the other hand, A(k+1) is

a Z-matrix with positive diagonal elements. Hence, we can conclude the
result by computing the inverse of A(k+1). �

Remark 3.10. By Lemma 3.1, it can be easily shown that applying
the preconditioned matrix P is equivalent to applying the first step of
the Gauss elimination. Moreover, it has been proved that the precon-
ditioned mixed-type splitting (AOR, SOR and Gauss-Seidel) iterative
method converges faster than the mixed-type splitting (AOR, SOR and
Gauss-Seidel) iterative method for solving an M-matrix linear system.
Assume that j(> 1) steps of Gauss elimination, on a given M-matrix A,

have been performed. Denote the result matrix by A(j). By Theorem 3.9,
A(j) itself is an M-matrix. Similar to the proof of Theorem 3.2, it can be
established that applying j steps of Gauss elimination can improve the
rate of convergence of the mixed-type splitting iterative method.

4. Numerical results

In this section we present some numerical examples to illustrate the
results established in the previous sections.

We define E∞ =
R∞,GS

R∞
as the asymptotic coefficient of efficiency.

The value of E∞ shows that the Gauss-Seidel method is E∞ times
faster asymptotically than a given method. In the following examples
E∞,M (E∞,SOR, E∞,AOR) shows the asymptotic coefficient of efficiency
for the mixed-type splitting (SOR, AOR) iterative method.

The matrix A in the following Example was used in [11].
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Example 4.1. Suppose that the coefficient matrix, A1 in the linear
system (1.1), is given by

A =


1 − 1

2×10+1 − 1
3×10+1 · · · − 1

n×10+1

− 1
2×10+2 1 − 1

3×10+2 · · · − 1
n×10+2

− 1
3×10+3 − 1

2×10+3 1 · · · − 1
n×10+3

...
...

...
...

. . .

− 1
n×10+n − 1

(n−1)×10+n − 1
(n−2)×10+n · · · 1

 .

Table 1.

Spectral radii of mixed-type splitting and AOR when D1 = 0.5(1/ω − 1)D,L1 = 0.5(1 − r/ω)L.

n ω r ρ(TG) ρ(T ) ρ(Tr,ω) E∞,M E∞,AOR

50 0.9 0.8 0.087219 0.172119 0.235915 1.38632 1.68895
100 0.95 0.8 0.104737 0.167120 0.215002 1.26493 1.47225
150 0.9 0.7 0.113111 0.216988 0.290315 1.42638 1.76213
200 0.8 0.65 0.119212 0.281770 0.385757 1.67910 2.23280

Table 2.

Spectral radii of mixed-type splitting and SOR when D1 = 0.7(1/ω − 1)D,L1 = 0

n ω ρ(TG) ρ(T ) ρ(Tω) E∞,M E∞,SOR

50 0.6 0.087219 0.371838 0.515493 2.46571 3.68127
100 0.7 0.104737 0.314262 0.438784 1.95504 2.74721
150 0.9 0.113111 0.182754 0.239422 1.28228 1.52455
200 0.95 0.119212 0.154379 0.185694 1.13837 1.26324

The following example was used in [3, 7].

Example 4.2. Let

1Note that the values of n are taken so that A is an M-matrix.
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A =



1 q r s q · · ·

s 1 q r
. . . q

q s
. . .

. . .
. . . s

r
. . .

. . .
. . . q r

s
. . . q s 1 q

. . . s r q s 1


,

where q = − p
n , r = − p

n+1 and s = − p
n+2 . For n = 9 and p = 1, the

spectral radius of the Gauss-Seidel method is ρ(TG) = 0.66459.

Table 3.

Spectral radii of mixed-type splitting and AOR when D1 = 0.4(1/ω − 1)D,L1 = 0.6(1 − r/ω)L.

ω r ρ(T ) ρ(Tr,ω) E∞,M E∞,AOR

0.5 0.3 0.85166 0.908023 2.5446 4.24340
0.6 0.4 0.83332 0.889844 2.24081 3.50080
0.7 0.6 0.81717 0.871485 2.02357 2.97029
0.8 0.65 0.80283 0.853125 1.86046 2.57216

Table 4.

Spectral radii of mixed-type splitting and SOR when D1 = 0.6(1/ω − 1)D,L1 = 0.

ω ρ(T ) ρ(Tr,ω) E∞,M E∞,AOR

0.4 0.871817 0.908762 2.97855 4.27066
0.6 0.805889 0.847752 1.89326 2.47377
0.7 0.772036 0.811464 1.57923 1.95574
0.8 0.737363 0.770021 1.34105 1.56344

The results, established in Section 3, are illustrated in the following
tables. We have performed three steps of the Gauss elimination for
the matrix A presented in Example 4.2. After applying three steps
of Gauss elimination, the spectral radius of the preconditioned Gauss-
Seidel method becomes ρ(TG) = 0.541982.
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Table 5.

Spectral radii of mixed-type splitting and AOR when D1 = 0.4(1/ω − 1)D,L1 = 0.6(1 − r/ω)L.

ω r ρ(T ) ρ(Tr,ω)
0.5 0.3 0.789023 0.867772
0.6 0.4 0.763344 0.841326
0.7 0.6 0.740793 0.814881
0.8 0.65 0.720827 0.788435

Table 6.

Spectral radii of mixed-type splitting and SOR when D1 = 0.6(1/ω − 1)D,L1 = 0.

ω ρ(T ) ρ(Tr,ω)
0.4 0.820627 0.871482
0.6 0.731177 0.787804
0.7 0.685726 0.738688
0.8 0.639367 0.683028

The matrix A in the next example arises from discretization of the
following differential equation, by using standard second-ordered differ-
ences; for more details see [14].
−uxx − uyy = f(x, y), in Ω = (0, 1)× (0, 1), u = g(x, y) on ∂Ω.

Example 4.3. Suppose that A has the following form:

A=


B −I

−I . . .
. . .

. . .
. . . −I
−I B

 ,

n×n

B =



4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0

0 −1 4 −1 · · ·
...

...
. . .

. . .
. . . 0

0 0 · · · −1 4 −1
0 0 · · · 0 −1 4


,

N×N

where n = N2.
Consider the linear system Ax = b. Assume that the right hand side

is generated as b = Ae, where eT = [1, 1, ..., 1]. Hence, the exact solution
x is known in advance and all its components are equal to 1.

In the analysis of the reliability of iterative solution of Ax = b, it
is convenient to consider the true error vector e(k) = x − x(k), where
x is the exact solution of the linear system Ax = b and x(k) is the
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kth approximate solution. The iteration process is terminated when∥∥e(k)∥∥
2
≤ 0.5× 10−8. In the following tables 7 and 8, m shows that the

preconditioned system Ax = b is obtained after performing m steps of
Gaussian elimination on the linear system Ax = b. In table 7, we apply
the mixed-type splitting iterative method withD1 = 0.4(1/ω−1)D,L1 =
0.6(1− r/ω)L. For simplicity, in the following tables, we write PMixed-
type (PSOR, PGS) instead of the preconditioned Mixed-type (SOR, GS)
iterative method.

Table 7.

n m ω Method Iteration
∥∥e(k)∥∥

2

400 140 0.85 SOR 669 4.9101× 10−9

PSOR 543 4.8834× 10−9

Mixed-type 581 4.8625× 10−9

PMixed-type 471 4.9549× 10−9

900 450 0.9 SOR 1334 4.9234× 10−9

PSOR 885 4.9121× 10−9

Mixed-type 1212 4.9202× 10−9

PMixed-type 775 4.89655× 10−9

For the Gauss-Seidel (GS) iterative method, the results are presented in
the following Table 8.

Table 8.

Results for the Gauss-Seidel method

n m Method Iteration
∥∥e(k)∥∥

2
400 140 GS 492 4.9742× 10−9

PGS 399 4.9986× 10−9

900 450 GS 1090 4.9073× 10−9

PGS 697 4.8632× 10−9
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5. Conclusion

We considered the mixed-type splitting iterative method for solving
the M-matrix linear system Ax = b. It was established that the Gauss-
Seidel iterative method converges faster than the mixed-type (SOR,
AOR) iterative method. Furthermore, we improved the rate of con-
vergence of the mixed-type (Gauss-Seidel, SOR, AOR) iterative method
by applying a preconditioned matrix. It was shown that the precondi-
tioned Gauss-Seidel method has smaller spectral radius than the pre-
conditioned mixd-type splitting iterative (SOR, AOR) method. Finally,
some numerical experiments were given to illustrate our results.
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