APPROSSIMATING FIXED POINTS OF GENERALIZED NONEXPANSIVE MAPPINGS

A. RAZANI AND H. SALAHIFARD

Communicated by Fraydoun Rezakhanlou

Abstract. Let C be a nonempty closed convex subset of a complete $\text{CAT}(0)$ space and $T : C \to C$ be a generalized nonexpansive mapping with $F(T) = \{x \in C : T(x) = x\} \neq \emptyset$. Suppose $\{x_n\}$ is generated iteratively by $x_1 \in C,$
$$x_{n+1} = t_nT[s_nTx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n,$$
for all $n \geq 1,$ where $\{t_n\}$ and $\{s_n\}$ are real sequences in $[0, 1]$ such that one of the following two conditions is satisfied:
(i) $t_n \in [a, b]$ and $s_n \in [0, 1]$, for some a, b with $0 < a \leq b < 1,$
(ii) $t_n \in [a, 1]$ and $s_n \in [a, b]$, for some a, b with $0 < a \leq b < 1.$

1. Introduction

Recently, Suzuki [17] introduced condition (C) as follows.
Condition (C): Let T be a mapping on a subset C of Banach space E.

Keywords: $\text{CAT}(0)$ spaces, Ishikawa iteration scheme, generalized nonexpansive mapping.
Received: 3 November 2010, Accepted: 4 January 2010.
*Corresponding author
© 2011 Iranian Mathematical Society.
Then, T is said to satisfy condition (C) (or generalized nonexpansive mapping) if
\[
\frac{1}{2}||x - Tx|| \leq ||x - y|| \text{ implies } ||Tx - Ty|| \leq ||x - y||,
\]
for all $x, y \in C$.

Proposition 1.1. Every nonexpansive mapping satisfies condition (C), but the inverse is not true.

Example 1.2. Define a mapping T on $[0, 3]$ by
\[
T(x) = \begin{cases}
0 & \text{if } x \neq 3, \\
1 & \text{if } x = 3.
\end{cases}
\]
Then, T satisfies condition (C), but T is not nonexpansive.

The purpose of this paper is to study the iterative scheme defined as follows.
Let C be a nonempty closed convex subset of a complete CAT(0) space and $T : C \to C$ be a generalized nonexpansive mapping with $F(T) \neq \emptyset$.
Suppose $\{x_n\}$ is generated iteratively by $x_1 \in C$,
\begin{equation}
(1.1) \quad x_{n+1} = t_nT[s_nTx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n,
\end{equation}
for all $n \geq 1$, where, $\{t_n\}$ and $\{s_n\}$ are real sequences in $[0, 1]$ such that
one of the following two conditions is satisfied:
\begin{equation}
(1.2) \quad \begin{cases}
(ii) & t_n \in [a, b] \text{ and } s_n \in [0, 1], \text{ for some } a, b \text{ with } 0 < a \leq b < 1, \\
(iii) & t_n \in [a, 1] \text{ and } s_n \in [a, b], \text{ for some } a, b \text{ with } 0 < a \leq b < 1.
\end{cases}
\end{equation}
We show that the sequence $\{x_n\}$, defined by (1.1), Δ-converges to a fixed point of T.

2. CAT(0) Spaces

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subset R$ to X such that $c(0) = x$, $c(l) = y$, and $d(c(t), c(\hat{t})) = |t - \hat{t}|$, for all $t, \hat{t} \in [0, l]$. In particular, c is an isometry and $d(x, y) = l$. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic is denoted by $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
Approximating fixed points of generalized nonexpansive mappings

[132x740]Approximating fixed points of generalized nonexpansive mappings 237

x to y, for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining any two of its points. A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the vertices of △) and a geodesic segment between each pair of vertices (the edges of △). A comparison triangle for geodesic triangle △(x1, x2, x3) in (X, d) is a triangle △(x̄1, x̄2, x̄3) := △(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that dE2(x̄i, x̄j) = d(xi, xj), for i, j ∈ {1, 2, 3}.

A geodesic metric space is said to be a CAT(0) space [1] if all geodesic triangles of appropriate size satisfy the following comparison axiom. Let △ be a geodesic triangle in X and let △ be a comparison triangle for △. Then, △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all comparison points x̄, ȳ ∈ △, d(x, y) ≤ dE2(x̄, ȳ). It is known that in a CAT(0) space, the distance function is convex [1]. Complete CAT(0) spaces are often called Hadamard spaces. Finally, we observe that if x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], which we will denote by \(\frac{y_1 + y_2}{2} \), then the CAT(0) inequality implies

\[
\begin{align*}
d(x, \frac{y_1 + y_2}{2})^2 & \leq \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2, \\
\end{align*}
\]

because equality holds in the Euclidean metric. In fact (see [1, page 163]), a geodesic metric space is a CAT(0) space if and only if it satisfies inequality (2.1) (which is known as the CN inequality of Bruhat and Tits [2]).

The following lemmas can be found in [4].

Lemma 2.1. Let (X, d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

\[d(x, z) = td(x, y) \quad \text{and} \quad d(y, z) = (1 - t)d(x, y). \]

We use the notation \((1 - t)x \oplus ty\) for this unique z.

Lemma 2.2. Let (X, d) be a CAT(0) space. Then,

\[d((1 - t)x \oplus ty, z)^2 \leq (1 - t)d(x, z)^2 + td(y, z)^2 - t(1 - t)d(x, y)^2, \]

for all t ∈ [0, 1] and x, y, z ∈ X.

The following result is of Xu [18].

Lemma 2.3. Let R > 1 be a fixed number and X be a Banach space. Then, X is uniformly convex if and only if there exists a continuous,
strictly increasing, and convex function $g : [0, \infty) \to [0, \infty)$ with $g(0) = 0$ such that

$$||Ax + (1 - \lambda)y||^2 \leq \lambda||x||^2 + (1 - \lambda)||y||^2 - \lambda(1 - \lambda)g(||x - y||),$$

for all $x, y \in B_{R}(0) = \{x \in X : ||x|| \leq R\}$ and $\lambda \in [0, 1]$.

Therefore, by Lemma 2.2, it turns out that $CAT(0)$ spaces offer nice examples of uniformly convex metric spaces. It is worth mentioning that the results in $CAT(0)$ spaces can be applied to any $CAT(\kappa)$ space with $\kappa \leq 0$, since any $CAT(\kappa)$ space is a $CAT(\hat{\kappa})$ space, for every $\hat{\kappa} \geq \kappa$(see [1, page 165]).

Now, we recall some definitions from [15].

Let X be a complete $CAT(0)$ space and (x_n) be a bounded sequence in X. For $x \in X$, set

$$r(x, (x_n)) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius $r((x_n))$ of (x_n) is given by

$$r((x_n)) = \inf \{r(x, (x_n)) : x \in X\},$$

and the asymptotic center $A((x_n))$ of (x_n) is the set

$$A((x_n)) = \{x \in X : r(x, (x_n)) = r((x_n))\}.$$

Definition 2.4. (see [9, Definition 3.1]) A sequence (x_n) in a $CAT(0)$ space X is said to Δ-converge to $x \in X$ if x is the unique asymptotic center of (u_n), for every sequence (u_n) of (x_n). In this case, we write $\Delta \lim_n x_n = x$ and call x the Δ-lim of (x_n).

It is known that in a $CAT(0)$ space, $A((x_n))$ consists of exactly one point [6]. Also, every $CAT(0)$ space has the Opial property, i.e., if (x_n) is a sequence in K and $\Delta \lim_n x_n = x$, then for each $y(\neq x) \in K$,

$$\limsup_{n} d(x_n, x) < \limsup_{n} d(x_n, y).$$

Lemma 2.5. [9] Every bounded sequence in a complete $CAT(0)$ space always has a Δ-convergent subsequence.

Lemma 2.6. [5] Let C be a closed convex subset of a complete $CAT(0)$ space and $\{x_n\}$ be a bounded sequence in C. Then, the asymptotic center of $\{x_n\}$ is in C.
Lemma 2.7. [17] Let C be a closed convex subset of a complete CAT(0) space X, and $T : C \to C$ be a generalized nonexpansive mapping. Then,
$$d(x, Ty) \leq 3d(x, Tx) + d(x, y),$$
for all $x, y \in C$.

The following result is a consequence of Lemma 2.9 in [10].

Lemma 2.8. Let X be a complete CAT(0) space and $x \in X$. Suppose $\{t_n\}$ is a sequence in $[b, c]$, for some $b, c \in (0, 1)$, and $\{x_n\}, \{y_n\}$ are sequences in X such that $\limsup_n d(x_n, x) \leq r$, $\limsup_n d(y_n, x) \leq r$, and $\lim_n d((1 - t_n)x_n \oplus t_n y_n, x) = r$, for some $r \geq 0$. Then,
$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

3. Main Result

Here, our main result is presented.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X and $T : C \to C$ be a generalized nonexpansive mapping. Suppose $x_1 \in C$ and $\{x_n\}$ is defined by (1.1), where sequences $\{t_n\}, \{s_n\}$ are given by (1.2). Then, $\lim_{n \to \infty} d(x_n, x^*)$ exists, for all $x^* \in F(T)$.

Proof. Set $y_n = s_n Tx_n \oplus (1 - s_n)x_n$. Since T is generalized nonexpansive and $x^* \in F(T)$,
$$\frac{1}{2} d(x^*, Tx^*) = 0 \leq d(x^*, y_n),$$
and
$$\frac{1}{2} d(x^*, Tx^*) = 0 \leq d(x^*, x_n),$$
for all $n \geq 1$. It implies $d(Tx_n, Ty_n) \leq d(x^*, y_n)$ and $d(Tx^*, Tx_n) \leq d(x^*, x_n)$. So,
$$d(x_{n+1}, x^*) = d(t_n T[s_n Tx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n, x^*)$$
$$\leq t_n d(Ty_n, x^*) + (1 - t_n)d(x_n, x^*)$$
$$\leq t_n d(y_n, x^*) + (1 - t_n)d(x_n, x^*)$$
$$\leq t_n(s_n d(Tx_n, x^*) + (1 - s_n)d(x_n, x^*)) + (1 - t_n)d(x_n, x^*)$$
$$\leq d(x_n, x^*).$$

This implies $d(x_n, x^*)$ is decreasing and bounded below, and so $\lim_{n \to \infty} d(x_n, x^*)$ exists. \qed
Theorem 3.2. Let C be a nonempty closed convex subset of a complete $\text{CAT}(0)$ space X and $T : C \to C$ be a generalized nonexpansive mapping. From arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ by (1.1), where sequences $\{t_n\}, \{s_n\}$ are given by (1.2). Then, $F(T)$ is nonempty if and only if $\{x_n\}$ is bounded and $\lim_n d(Tx_n, x_n) = 0$.

Proof. Suppose that $F(T)$ is nonempty and $x^* \in F(T)$. Then, by Theorem 3.1, $\lim_n d(x_n, x^*)$ exists and $\{x_n\}$ is bounded. Set
\begin{equation}
(3.1) \quad c = \lim_n d(x_n, x^*)
\end{equation}
and $y_n = s_nTx_n \oplus (1 - s_n)x_n$, for all $n \geq 1$. Since
\[
\frac{1}{2}d(x^*, Tx^*) = 0 \leq d(x^*, y_n),
\]
and
\[
\frac{1}{2}d(x^*, Tx^*) = 0 \leq d(x^*, x_n),
\]
for all $n \geq 1$, then $d(Tx^*, Ty_n) \leq d(x^*, y_n)$ and $d(Tx^*, Tx_n) \leq d(x^*, x_n)$.

Thus,
\[
d(Ty_n, x^*) \leq d(y_n, x^*)
\]
\[
= d(s_nTx_n \oplus (1 - s_n)x_n, x^*)
\]
\[
\leq s_n d(Tx_n, x^*) + (1 - s_n)d(x_n, x^*)
\]
\[
\leq s_n d(x_n, x^*) + (1 - s_n)d(x_n, x^*)
\]
\[
= d(x_n, x^*).
\]

Therefore,
\begin{equation}
(3.2) \quad \limsup_n d(Ty_n, x^*) \leq \limsup_n d(y_n, x^*) \leq c.
\end{equation}

Furthermore, we have
\begin{equation}
(3.3) \quad \lim_n d(t_nTy_n \oplus (1 - t_n)x_n, x^*) = \lim_n d(x_{n+1}, x^*) = c.
\end{equation}

Case 1: $0 < a \leq t_n \leq b < 1$ and $0 \leq s_n \leq b < 1$.

By (3.1), (3.2), (3.3) and Lemma 2.8, we have $\lim_n d(Ty_n, x_n) = 0$. Since for each $s_n \in [0, b]$,
\[
d(Tx_n, x_n) \leq d(Tx_n, y_n) + d(y_n, x_n)
\]
\[
\leq (1 - s_n)d(x_n, Tx_n) + d(y_n, x_n),
\]
then we have
\[
s_n d(x_n, Tx_n) \leq d(y_n, x_n).
\]
Since T is generalized nonexpansive, by choosing $s_n = \frac{1}{2}$, we obtain $d(Tx_n, Ty_n) \leq d(x_n, y_n)$, and so it follows:

$$d(Tx_n, x_n) \leq d(Tx_n, Ty_n) + d(Ty_n, x_n) \leq d(x_n, y_n) + d(Ty_n, x_n) = d(s_nTx_n \oplus (1 - s_n)x_n, x_n) + d(Ty_n, x_n) \leq s_n d(Tx_n, x_n) + d(Ty_n, x_n).$$

Thus, we have $(1 - b)d(Tx_n, x_n) \leq (1 - s_n)d(Tx_n, x_n) \leq d(Ty_n, x_n)$.

Therefore, $\lim_n d(Tx_n, x_n) \leq \frac{1}{(1 - b)} \lim_n d(Ty_n, x_n) = 0$.

Case 2: $0 < a \leq t_n \leq 1$ and $0 < a \leq s_n \leq b < 1$.

Since we have $d(Tx_n, x^*) \leq d(x_n, x^*)$, for all $n \geq 1$, we get

$$\lim_n d(Tx_n, x^*) \leq c. \tag{3.4}$$

Now,

$$d(x_{n+1}, x^*) \leq t_n d(Ty_n, x^*) + (1 - t_n)d(x_n, x^*) \leq t_n d(y_n, x^*) + (1 - t_n)d(x_n, x^*) = t_n d(y_n, x^*) + d(x_n, x^*) - t_n d(x_n, x^*),$$

which implies

$$\frac{d(x_{n+1}, x^*) - d(x_n, x^*)}{t_n} \leq d(y_n, x^*) - d(x_n, x^*).$$

Taking \liminf from both sides of the above inequality, we have

$$\liminf \frac{d(x_{n+1}, x^*) - d(x_n, x^*)}{t_n} \leq \liminf (d(y_n, x^*) - d(x_n, x^*)).$$

Since $\lim d(x_{n+1}, x^*) = \lim d(x_n, x^*) = c$, then

$$0 \leq \liminf (d(y_n, x^*) - d(x_n, x^*)).$$

On the other hand, since $d(y_n, x^*) - d(x_n, x^*) \leq 0$, $\liminf (d(y_n, x^*) - d(x_n, x^*)) \leq 0$. Therefore, $\liminf (d(y_n, x^*) - d(x_n, x^*)) = 0$. This shows

$$0 = \liminf (d(y_n, x^*) - d(x_n, x^*)) \leq \liminf d(y_n, x^*) - \liminf d(x_n, x^*).$$

Therefore, $\liminf d(x_n, x^*) \leq \liminf d(y_n, x^*)$. This means that $c \leq \liminf_n d(y_n, x^*)$. By combining this inequality and (3.2), we have

$$c \leq \liminf_n d(y_n, x^*) \leq \limsup_n d(y_n, x^*) \leq c. \tag{5.5}$$

Therefore,

$$c = \lim_n d(y_n, x^*) = \lim d(s_n Tx_n \oplus (1 - s_n)x_n, x^*).$$
By (3.5), (3.4), (3.1) and Lemma 2.8, we have \(\lim_{n} d(Tx_n, x_n) = 0 \).
Conversely, suppose that \(\{x_n\} \) is bounded and \(\lim_{n} d(x_n, Tx_n) = 0 \). Let
\(A((x_n)) = \{x\} \). Then, \(x \in C \), by Lemma 2.6. Since \(T \) is generalized nonexpansive, we have, by Lemma 2.7,
\[
d(x_n,Tx) \leq 3d(x_n,Tx_n) + d(x_n,x),
\]
which implies
\[
\limsup_{n} d(x_n,Tx) \leq \limsup_{n}[3d(x_n,Tx_n) + d(x_n,x)] = \limsup_{n} d(x_n,x).
\]
By the uniqueness of asymptotic centers, we get \(Tx = x \). Therefore, \(x \) is a fixed point of \(T \).

Theorem 3.3. Let \(C \) be a nonempty closed convex subset of a complete \(\text{CAT}(0) \) space \(X \), and \(T : C \to C \) be a generalized nonexpansive mapping with \(F(T) \neq \emptyset \). Suppose \(\{x_n\} \) is defined by (1.1), where \(\{t_n\} \) and \(\{s_n\} \) are given by (1.2). Then, \(\{x_n\} \), \(\Delta \)-converges to a fixed point of \(T \).

Proof. Theorem 3.2 guarantees that \(\{x_n\} \) is bounded and
\[
\lim_{n} d(x_n,Tx_n) = 0.
\]
Let \(W_w(x_n) := \bigcup A(u_n) \), where the union is taken over all subsequences \(\{u_n\} \) of \(\{x_n\} \). We claim that \(W_w(x_n) \subset F(T) \).
Let \(u \in W_w(x_n) \). Then, there exists a subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(A((u_n)) = \{u\} \). By Lemmas 2.5 and 2.6, there exists a subsequence \(v_n \) of \(u_n \) such that \(\Delta - \lim_{n} v_n = v \in C \). Since \(\lim_{n} d(v_n,Tv_n) = 0 \) and \(T \) is generalized nonexpansive, then, by Lemma 2.7,
\[
d(v_n,Tv) \leq 3d(v_n,Tv_n) + d(v_n,v).
\]
By taking \(\lim \) and \(\text{Opial} \) property, we obtain \(v \in F(T) \). Now, we claim that \(u = v \). If not, by Theorem 3.1, \(\lim_{n} d(x_n,v) \) exists, and thus by the uniqueness of asymptotic centers,
\[
\limsup_{n} d(v_n,v) \leq \limsup_{n} d(v_n,u) = \limsup_{n} d(u_n,u) = \limsup_{n} d(v_n,v) = \limsup_{n} d(x_n,v) = \limsup_{n} d(v_n,v),
\]
which is a contradiction. So, \(u = v \in F(T) \). In order to show \(\{x_n\} \), \(\Delta \)-converges to a fixed point of \(T \), it suffices to show that \(W_w(x_n) \) consists
of exactly one point. Let \(\{u_n\} \) be a subsequence of \(\{x_n\} \). By lemmas 2.5 and 2.6, there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta - \lim_n v_n = v \in C \). Let \(A((u_n)) = \{u\} \) and \(A((x_n)) = \{x\} \). We have seen that \(v = u \) and \(v \in F(T) \). Therefore, we can complete the proof by showing that \(v = x \). If not, since \(\{d(x_n, v)\} \) is convergent by the last argument, then, by the uniqueness of asymptotic centers,

\[
\limsup_n d(v_n, v) < \limsup_n d(v_n, x) \\
\leq \limsup_n d(x_n, x) \\
< \limsup_n d(x_n, v) \\
= \limsup_n d(u_n, v),
\]

which is a contradiction, and hence the conclusion follows. \(\square \)

We recall (see [16]), a mapping \(T : C \to C \) is said to satisfy condition (I), if there exists a nondecreasing function \(f : [0, \infty] \to [0, \infty) \) with \(f(0) = 0 \) and \(f(r) > 0 \), for all \(r > 0 \), such that \(d(x, Tx) \geq f(d(x, F(T))) \), for all \(x \in C \), where, \(d(x, F(T)) = \inf_{z \in F(T)} d(x, z) \).

Theorem 3.4. Let \(C \) be a nonempty closed convex subset of a complete \(CAT(0) \) space \(X \), and \(T : C \to C \) be a generalized nonexpansive mapping satisfying condition (I) with \(F(T) \neq \emptyset \). Suppose \(\{x_n\} \) is defined by (1.1), where \(\{t_n\} \) and \(\{s_n\} \) are given by (1.2). Then, \(\{x_n\} \) converges strongly to some fixed point of \(T \).

Proof. First, we show that \(F(T) \) is closed. Let \(\{x_n\} \) be a sequence in \(F(T) \) converging to some point \(z \in C \). Since

\[
\frac{1}{2} d(x_n, Tx_n) = 0 \leq d(x_n, z),
\]

we have

\[
\limsup_n d(x_n, Tz) = \limsup_n d(Tx_n, Tz) \\
\leq \limsup_n d(x_n, z) \\
= 0.
\]

That is, \(\{x_n\} \) converges to \(Tz \). This implies \(Tz = z \). Therefore, \(F(T) \) is closed. By Theorem 3.2, we have \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \). It follows from condition (I) that

\[
\lim_{n \to \infty} f(d(x_n, F(T))) \leq \lim_{n \to \infty} d(x_n,Tx_n) = 0.
\]

Then, \(\lim_{n \to \infty} f(d(x_n, F(T))) = 0 \). Since \(f : [0, \infty] \to [0, \infty) \) is a nondecreasing function satisfying \(f(0) = 0, f(r) > 0 \), for all \(r \in (0, \infty) \),
we obtain \(\lim_{n \to \infty} d(x_n, F(T)) = 0 \). Hence, we can choose a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that

\[
d(x_{n_k}, p_k) \leq \frac{1}{2^k},
\]

for all integer \(k \geq 1 \) and some sequence \(\{p_k\} \) in \(F(T) \). Again, by Theorem 3.1,

\[
d(x_{n_k+1}, p_k) \leq d(x_{n_k}, p_k) \leq \frac{1}{2^k}.
\]

Hence,

\[
d(p_{k+1}, p_k) \leq d(p_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, p_k)
\leq \frac{1}{2^{k+1}} + \frac{1}{2^k}
< \frac{1}{2^{k-1}},
\]

which implies \(\{p_k\} \) is a Cauchy sequence. Since \(F(T) \) is closed, then \(\{p_k\} \) converges strongly to a point \(p \) in \(F(T) \). It is readily seen that \(\{x_{n_k}\} \) converges strongly to \(p \). Since \(\lim_n d(x_n, p) \) exists, it must be the case that \(\lim_{n \to \infty} d(x_n, p) = 0 \). \(\square \)

Remark 3.5. Since every nonexpansive mapping is a generalized nonexpansive mapping, one can state all the above results for nonexpansive mappings and obtain the results in [10]. Also, by setting \(s_n = 0 \), one can obtain the results in [13].

Acknowledgments

The first author would like to thank the School of Mathematics of the Institute for Research in Fundamental Sciences (IPM), Teheran, Iran, for supporting this research (Grant No. 89470126).

References

Approximating fixed points of generalized nonexpansive mappings

A. Razani

Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran

and

School of Mathematics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5746, Tehran, Iran

Email: razani@ikiu.ac.ir
H. Salahifard
Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran
Email: salahifard@gmail.com