MAXIMAL SUBSETS OF PAIRWISE NON-COMMUTING ELEMENTS OF SOME FINITE \(p \)-GROUPS

A. AZAD*, S. FOULADI AND R. ORFI

Communicated by Ali Reza Ashrafi

Abstract. Let \(G \) be a group. A subset \(X \) of \(G \) is a set of pairwise non-commuting elements if \(xy \neq yx \) for any two distinct elements \(x \) and \(y \) in \(X \). If \(|X| \geq |Y| \) for any other set of pairwise non-commuting elements, \(Y \) in \(G \), then \(X \) is said to be a maximal subset of pairwise non-commuting elements. Here, we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian \(p \)-groups with central quotient of order less than or equal to \(p^3 \) for any prime number \(p \). As an immediate consequence, we give this cardinality for any non-abelian group of order \(p^4 \).

1. Introduction

Let \(G \) be a non-abelian group and let \(X \) be a maximal subset of pairwise non-commuting elements of \(G \). The cardinality of such a subset is denoted by \(\omega(G) \). Also, \(\omega(G) \) is the maximal clique size in the non-commuting graph of a group \(G \). Let \(Z(G) \) be the center of \(G \). The non-commuting graph of a group \(G \) is a graph with \(G \setminus Z(G) \) as the vertices and join two distinct vertices \(x \) and \(y \), whenever \(xy \neq yx \). By a famous result of Neumann [7], answering a question of Erdős, the
finiteness of $\omega(G)$ in G is equivalent to the finiteness of the factor group $G/Z(G)$. Pyber [8] has shown that there is a constant c such that $|G : Z(G)| \leq c^{\omega(G)}$. Chin [4] obtained upper and lower bounds for $\omega(G)$ for an extra-special p-group G, where p is an odd prime number. For $p = 2$, Isaacs (see [3], p. 40) showed that $\omega(G) = 2n + 1$ for any extra-special group G of order 2^{2n+1}. Also, in [1, Lemma 4.4], it was proved that $\omega(\text{GL}(2, q)) = q^2 + q + 1$. Furthermore, in [2, Theorem 1.1], it was shown that $\omega(\text{GL}(3, q)) = q^6 + q^5 + 3q^4 + 3q^3 + q^2 - q - 1$, for $q \geq 4$, $\omega(\text{GL}(3, 2)) = 56$ and $\omega(\text{GL}(3, 3)) = 1067$. Here, we show that $\omega(G) = p + 1$, for any finite p-group G with central quotient of order p^2, where p is a prime number (Lemma 3.1). Also, we find $\omega(G)$, for any finite p-group G with central quotient of order p^3 (Theorem 3.3). As an immediate consequence, we determine $\omega(G)$ for any non-abelian group of order p^4.

Throughout this paper, we use the following notation: p denotes a prime number, $C_G(x)$ is the centralizer of an element x in a group G, the nilpotency class of a group G is shown by $\text{cl}(G)$, and a p-group of maximal class is a non-abelian group G of order p^n with $\text{cl}(G) = n - 1$.

2. Basic results

In this section, we give some basic results needed for any main results.

Lemma 2.1. Let G be a finite group. Then,

(i) for any subgroup H of G, $\omega(H) \leq \omega(G)$, and

(ii) for any normal subgroup N of G, $\omega(G/N) \leq \omega(G)$.

Proof. This is evident. □

A group G is called an AC-group, if the centralizer of every non-central element of G is abelian.

Lemma 2.2. The followings on a group G are equivalent.

(i) G is an AC-group.

(ii) If $[x, y] = 1$, then $C_G(x) = C_G(y)$, where $x, y \in G \setminus Z(G)$.

(iii) If $[x, y] = [x, z] = 1$, then $[y, z] = 1$, where $x \in G \setminus Z(G)$.

(iv) If A and B are subgroups of G and $Z(G) < C_G(A) \leq C_G(B) < G$, then $C_G(A) = C_G(B)$.

Proof. This is straightforward. See also [9], Lemma 3.2. □

Lemma 2.3. Let G be an AC-group.
(i) If \(a, b \in G \setminus Z(G) \) with distinct centralizers, then \(C_G(a) \cap C_G(b) = Z(G) \).

(ii) If \(G = \bigcup_{i=1}^{k} C_G(a_i) \), where \(C_G(a_i) \) and \(C_G(a_j) \) are distinct for \(1 \leq i < j \leq k \), then \(\{a_1 \ldots a_k\} \) is a maximal set of pairwise non-commuting elements.

Proof.

(i) We see that \(Z(G) \leq C_G(a) \cap C_G(b) \). If \(Z(G) < C_G(a) \cap C_G(b) \), then there exists an element \(x \) in \(C_G(a) \cap C_G(b) \) such that \(x \notin Z(G) \). This means that \(C_G(a) = C_G(x) \) and \(C_G(b) = C_G(x) \), by Lemma 2.2 (ii), which is impossible.

(ii) By Lemma 2.2 (ii), \(\{a_1, a_2, \ldots a_k\} \) is a set of pairwise non-commuting elements. Suppose to the contrary that \(\{b_1, b_2, \ldots, b_t\} \) is another set of non-commuting elements of \(G \) with \(t > k \). Then, we see that there exist positive integers \(r, s \) and \(i \) with \(r \neq s, 1 \leq r, s \leq t \) and \(1 \leq i \leq k \), such that \(b_r, b_s \in C_G(a_i) \). This yields that \(C_G(b_r) = C_G(b_s) \), by Lemma 2.2 (ii), or equivalently \(b_r b_s = b_s b_r \), which is a contradiction. \(\square \)

3. Main results

In this section, we determine the cardinality of a maximal subset of pairwise non-commuting elements in any \(p \)-groups with central quotient of order less than or equal to \(p^2 \). Then, we give this cardinality for any non-abelian group of order \(p^4 \).

Lemma 3.1. Let \(G \) be a group of order \(p^n \) with the central quotient of order \(p^2 \), where \(p \) is a prime number. Then, \(\omega(G) = p + 1 \).

Proof. First, we show that \(G \) is an \(AC \)-group. Suppose that \(a \) is a non-central element of \(G \). So, \(Z(G) < C_G(a) \). Therefore, \(|C_G(a)| = p^{n-1} \). Since \(C_G(a) = \langle Z(G), a \rangle \), we see that \(C_G(a) \) is abelian and so \(G \) is an \(AC \)-group. Now, since \(G \) is finite, we may write \(G = \bigcup_{i=1}^{k} C_G(a_i) \), where \(C_G(a_i) \) and \(C_G(a_j) \) are distinct for \(1 \leq i < j \leq k \). Therefore, \(X = \{a_1, a_2, \ldots, a_k\} \) is a maximal subset of pairwise non-commuting elements of \(G \), by Lemma 2.3 (ii). Thus, by Lemma 2.3 (i),

\[
|G| = \sum_{i=1}^{k} (|C_G(a_i)| - |Z(G)|) + |Z(G)|.
\]

This yields that \(p^n = k \times (p^{n-1} - p^{n-2}) + p^{n-2} \), and so \(k = p + 1 \). \(\square \)

Lemma 3.2. Let \(G \) be a group of order \(p^n \) with the central quotient of order \(p^3 \), where \(p \) is a prime number.
(i) G is an AC-group.
(ii) If G possesses an abelian maximal subgroup, then there exists an element x in $G \setminus Z(G)$ such that $C_G(x)$ is of order p^{n-1} and $C_G(x)$ is uniquely determined.

Proof. (i) Let $x \in G \setminus Z(G)$. Then, $Z(G) < Z(C_G(x)) \leq C_G(x) < G$. This yields that $|C_G(x) : Z(C_G(x))|$ divides p, and so $C_G(x)$ is abelian.

(ii) Let M be an abelian maximal subgroup of G and $x \in M \setminus Z(G)$. We see that $C_G(x) = M$, since $M \leq C_G(x) < G$. Now, if $C_G(y)$ is of order p^{n-1} with $C_G(x) \neq C_G(y)$, then $C_G(x) \cap C_G(y) = Z(G)$, by Lemma 2.3 (i). Moreover, $|G : C_G(x) \cap C_G(y)| \leq |G : C_G(x)||G : C_G(y)| = p^2$, which is impossible.

\[\square\]

Theorem 3.3. Let G be a group of order p^n with the central quotient of order p^3, where p is a prime number.

(i) If G possesses no abelian maximal subgroup, then $\omega(G) = p^2 + p + 1$.
(ii) If G possesses an abelian maximal subgroup, then $\omega(G) = p^2 + 1$.

Proof. (i) For any non-central element x in G, we have $Z(G) < C_G(x) < G$. Therefore, $|C_G(x)| = p^{n-2}$, since G is an AC-group. Now, we may write $G = \cup_{i=1}^k C_G(a_i)$, where $C_G(a_1)$ and $C_G(a_j)$ are distinct, for $1 \leq i < j \leq k$. Therefore, $X = \{a_1, a_2, \ldots, a_k\}$ is a maximal subset of pairwise non-commuting elements of G, by Lemma 2.3 (ii). Thus, by Lemma 2.3(i),

$$|G| = \sum_{i=1}^k (|C_G(a_i)| - |Z(G)|) + |Z(G)|.$$

This yields that $p^n = k \times (p^{n-2} - p^{n-3}) + p^{n-3}$, and so $k = p^2 + p + 1$.

(ii) By Lemma 3.2 (ii), there exists $a \in G \setminus Z(G)$ such that $C_G(a)$ is of order p^{n-1} and this is the only centralizer of order p^{n-1}. Now, we may write $G = \cup_{i=1}^k C_G(b_i)$ such that the elements of the union are distinct. Since $a \in G$, there exists $1 \leq i \leq k$ such that $a \in C_G(b_i)$, and so $ab_i = b_i a$. Therefore, $C_G(b_i) = C_G(a)$, by Lemma 2.2 (ii). This means that $C_G(a)$ is one of the elements of the union. We may assume that $C_G(a) = C_G(b_1)$. Hence, $G = C_G(a) \cup C_G(b_2) \cup \cdots \cup C_G(b_k)$, where $|C_G(b_i)| = p^{n-2}$, for $2 \leq i \leq k$. So, by using Lemma 2.3 (i), we deduce that $|G| = |C_G(a)| + \sum_{i=2}^k (|C_G(b_i)| - |Z(G)|)$, or equivalently $p^n = p^{n-1} + (k-1)(p^{n-2} - p^{n-3})$, and hence $k = p^2 + 1$.

\[\square\]
Corollary 3.4. Let G be a non-abelian group of order p^4.

(i) If G is of maximal class, then $\omega(G) = 1 + p^2$.

(ii) If G is of class two, then $\omega(G) = 1 + p$.

Proof. (i) By Lemma 3.2, we see that G is an AC-group, since $|Z(G)| = p$. Now, by considering class equation, there exists $x \in G \setminus Z(G)$ such that $|C_G(x)| = p^3$. The rest follows from Theorem 3.3 (ii).

(ii) We claim that $|Z(G)| = p^2$. For otherwise, $|Z(G)| = p$, and so, by [6, Lemma 04], we have $\exp(G/Z(G)) = \exp(G') = p$. Therefore, G is an extra special group, which is a contradiction, by [10, Theorem 4.18]. Now, we can complete the proof by Lemma 3.1.

References

A. Azad
Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8349, Iran

Email: a_azad@araku.ac.ir
S. Fouladi
Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave., Tehran 1561836314, Iran
Email: s_fouladi@khu.ac.ir

R. Orfi
Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran
Email: r_orfi@arak.ac.ir