Title:
n-cocoherent rings, n-cosemihereditary rings and n-V-rings

Author(s):
Z. Zhu
\textbf{n-COCOHERENT RINGS, n-COSEMIHEREDITARY RINGS AND n-V-RINGS}

Z. ZHU

(Communicated by Bernhard Keller)

Abstract. Let R be a ring, and let n, d be non-negative integers. A right R-module M is called (n, d)-projective if $\text{Ext}_R^{d+1}(M, A) = 0$ for every n-copresented right R-module A. R is called right n-cocoherent if every n-copresented right R-module is $(n+1)$-copresented, it is called a right co-(n, d)-ring if every right R-module is (n, d)-projective. R is called right n-cosemihereditary if every submodule of a projective right R-module is $(n, 0)$-projective, it is called a right n-V-ring if it is a right co-$(n, 0)$-ring. Some properties of (n, d)-projective modules and (n, d)-projective dimensions of modules over n-cocoherent rings are studied. Certain characterizations of n-copresented modules, $(n, 0)$-projective modules, right n-cocoherent rings, right n-cosemihereditary rings, as well as right n-V-rings are given respectively.

Keywords: (n, d)-projective module; n-cocoherent ring; co-(n, d)-ring; n-cosemihereditary ring; n-V-ring.

MSC(2010): Primary: 16D40; Secondary: 16E10, 16E60.

1. Introduction and preliminaries

Throughout this paper, R is an associative ring with identity and all modules are unitary.

First we recall some known notions and facts needed in the sequel. Let R be a ring, n, d non-negative integers and M a right R-module. Then:
(1) M is called \textit{n-presented} \cite{1} if there is an exact sequence of right R-modules $F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0$ where each F_i is a finitely generated free, equivalently projective, right R-module.

(2) R is called \textit{right n-coherent} \cite{1} if every n-presented right R-module is $(n + 1)$-presented.

(3) M is called (n, d)-injective \cite{13} if $\text{Ext}^{d+1}_R(A, M) = 0$ for every n-presented right R-module A.

(4) R is called a \textit{right (n, d)-ring} \cite{13} if every n-presented right R-module has the projective dimension at most d, or equivalently, if every right R-module is (n, d)-injective. We note that a commutative right (n, d)-ring is called an (n, d)-ring in \cite{1}. Right n-coherent rings and right (n, d)-rings have been studied by several authors (see, for example, \cite{1, 2, 5, 6, 7, 13, 15}).

(5) M is said to be \textit{cofree} \cite{3} if it is isomorphic to a direct product of the injective hulls of some simple right R-modules.

(6) M is said to be \textit{finitely corelated} \cite{3} if there is a short exact sequence $0 \to M \to N \to A \to 0$ of right R-modules, where N is finitely cogenerated, cofree, and A is finitely cogenerated. It is easy to see that M is finitely corelated if and only if there exists a short exact sequence of right R-modules $0 \to M \to E_0 \to E_1$, where each E_i is a finitely cogenerated injective module. Finitely corelated modules are also called finitely copresented modules in some literatures such as \cite{10}.

(7) M is said to be \textit{n-copresented} \cite{12} if there is an exact sequence of right R-modules $0 \to M \to E_0 \to E_1 \to \cdots \to E_n$, where each E_i is a finitely cogenerated injective module.

(8) R is called right \textit{co-semihereditary} \cite{8, 11, 16} if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is injective.

(9) R is called right \textit{co-coherent} (cocoherent) \cite{16} if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is finitely copresented.

(10) R is called right \textit{n-cocoherent} \cite{12} in case every n-copresented right R-module is $(n + 1)$-copresented. It is easy to see that R is right cocoherent if and only if it is right 1-cocoherent. Recall that a ring R is called right \textit{co-noethrian} \cite{3} if every factor module of a finitely cogenerated right R-module is finitely cogenerated. By \cite[Proposition 17]{3}, a ring R is right co-noethrian if and only if it is right 0-cocoherent.
In this paper, we shall introduce the dual concepts of \((n, d)\)-injective right \(R\)-modules and right \((n, d)\)-rings, respectively. We shall call a right \(R\)-module \(M\) \((n, d)\)-projective if \(\text{Ext}^{d+1}_R(M, A) = 0\) for every \(n\)-copresented right \(R\)-module \(A\), and we shall call a ring \(R\) right \(co-(n, d)\)-ring if every right \(R\)-module is \((n, d)\)-projective. Some characterizations and properties of \((n, d)\)-projective modules will be provided and \((n, d)\)-projective dimensions of right \(R\)-modules over right \(n\)-cocoherent rings will be discussed. Moreover, the concepts of right \(n\)-cosemihereditary rings and right \(n\)-V-rings will be introduced and right \(n\)-cosemihereditary rings and right \(n\)-V-rings will be characterized by \((n, 0)\)-projective right \(R\)-modules.

Lemma 1.1. Let \(A, B\) be two right \(R\)-modules and let \(n\) be a non-negative integer. Then \(A \oplus B\) is \(n\)-copresented if and only if both \(A\) and \(B\) are \(n\)-copresented.

Proof. Assume that \(A\) and \(B\) are \(n\)-copresented. Then there exist two exact sequence of right \(R\)-modules

\[
0 \rightarrow A \xrightarrow{\alpha} E_0 \xrightarrow{f_0} E_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{n-1}} E_n
\]

and

\[
0 \rightarrow B \xrightarrow{\beta} E'_0 \xrightarrow{g_0} E'_1 \xrightarrow{g_1} \cdots \xrightarrow{g_{n-1}} E'_n
\]

where \(E_i\) and \(E'_i\) are finitely cogenerated injective modules for all \(i\). Thus, we obtain an exact sequence of right \(R\)-modules

\[
0 \rightarrow A \oplus B \xrightarrow{\alpha \oplus \beta} E_0 \oplus E'_0 \xrightarrow{f_0 \oplus g_0} E_1 \oplus E'_1 \xrightarrow{f_1 \oplus g_1} \cdots
\]

\[
\rightarrow E_{n-1} \oplus E'_{n-1} \xrightarrow{f_{n-1} \oplus g_{n-1}} E_n \oplus E'_n
\]

where each \(E_i \oplus E'_i\) is a finitely cogenerated injective module. Thus \(A \oplus B\) is \(n\)-copresented.

Conversely, suppose that \(A \oplus B\) is \(n\)-copresented. Then there exists an exact sequence of right \(R\)-modules

\[
0 \rightarrow A \oplus B \xrightarrow{\xi} E_0 \xrightarrow{d_0} E_1 \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} E_n
\]

where each \(E_i\) is a finitely cogenerated injective module. Hence we have an exact sequence of right \(R\)-modules

\[
0 \rightarrow A \xrightarrow{\xi} E(\xi(A)) \xrightarrow{d_{0i_0}} E(\text{Im}(d_{0i_0})) \xrightarrow{d_{1i_1}} E(\text{Im}(d_{1i_1})) \rightarrow \cdots
\]
\[
\rightarrow E(\text{Im}(d_{n-2}i_{n-2})) \rightarrow E(\text{Im}(d_{n-1}i_{n-1}))
\]

where \(E(\varepsilon(A)) \) is a direct summand of \(E_0 \), \(E(\text{Im}(d_{k}i_{k})) \) is a direct summand of \(E_{k+1} \), \(i_0 \) is the natural injection from \(E(\varepsilon(A)) \) to \(E_0 \) and \(i_k \) is the natural injection from \(E(\text{Im}(d_{k}i_{k})) \) to \(E_{k+1} \) for each \(k = 0, \cdots, n - 1 \).

Therefore, \(A \) is \(n \)-copresented. \(\square \)

Now, we give some characterizations of \(n \)-copresented modules.

Proposition 1.2. Let \(n \) be a positive integer. Then the following statements are equivalent for a right \(R \)-module \(M \):

1. \(M \) is \(n \)-copresented.
2. There exists an exact sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow L \rightarrow 0
 \]
 where \(E_0, \cdots, E_{n-1} \) are finitely cogenerated injective modules and \(L \) is finitely cogenerated.
3. \(M \) is \((n-1) \)-copresented and, if the sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow L \rightarrow 0
 \]
 is exact, where \(E_0, \cdots, E_{n-1} \) are finitely cogenerated injective modules, then \(L \) is finitely cogenerated.
4. There exists an exact sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E \rightarrow L \rightarrow 0
 \]
 where \(E \) is finitely cogenerated injective and \(L \) is \((n-1) \)-copresented.
5. \(M \) is finitely cogenerated and, if the sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E \rightarrow L \rightarrow 0
 \]
 is exact with \(E \) finitely cogenerated injective, then \(L \) is \((n-1) \)-copresented.

Proof.

1. \(\Rightarrow \) (2). Since \(M \) is \(n \)-copresented, there exists an exact sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \xrightarrow{f} E_n,
 \]
 where each \(E_i \) is finitely cogenerated injective. Let \(L = \text{Im}(f) \). Then \(L \) is finitely cogenerated and the sequence \(0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow L \rightarrow 0 \) is exact.

2. \(\Rightarrow \) (3). Follows by the dual theorem of the generalization of Schanuel’s Lemma [9, Exercise 3.37].

3. \(\Rightarrow \) (1). Since \(M \) is \((n-1) \)-copresented, there exists an exact sequence of right \(R \)-modules
 \[
 0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \xrightarrow{g} E_{n-1},
 \]
 where \(E_0, E_1, \cdots, E_{n-1} \) are finitely cogenerated injective modules. Let \(L = E_{n-1}/\text{Im}(g) \). Then by (3), \(L \) is finitely cogenerated. Let \(E_n = E(L) \).
Then we get an exact sequence of right R-modules $0 \to M \to E_0 \to E_1 \to \cdots \to E_n$ with each E_i finitely cogenerated injective. Therefore, M is n-copresented.

(1) \Rightarrow (4). Since M is n-copresented, there exists an exact sequence of right R-modules $0 \to M \to E \xrightarrow{\alpha} E_1 \to \cdots \to E_{n-1} \to E_n$, where E, E_1, \cdots, E_{n-1} are finitely cogenerated injective modules. Let $L = \text{Im}(\alpha)$. Then it is easy to see that L is $(n-1)$-copresented, and the sequence $0 \to M \to E \to L \to 0$ is exact.

(4) \Rightarrow (5). Follows by the dual theorem of Schanuel’s Lemma and Lemma 1.1.

(5) \Rightarrow (1). Since M is finitely cogenerated, $E(M)$ is finitely cogenerated injective. By (5), $E(M)/M$ is $(n-1)$-copresented, and so there exists an exact sequence of right R-modules $0 \to E(M)/M \xrightarrow{h} E_1 \to \cdots \to E_{n-1} \to E_n$ with each E_i finitely cogenerated injective. Thus we obtain an exact sequence of right R-modules $0 \to M \to E(M) \xrightarrow{h\pi} E_1 \to \cdots \to E_{n-1} \to E_n$, where π is the natural epimorphism of $E(M)$ onto $E(M)/M$, and hence M is n-copresented.

From Proposition 1.2(4), it is easy to see that right n-coherent ring is right $(n+1)$-coherent.

2. n-coherent rings and (n,d)-projective modules

We begin this section with some characterizations of right n-coherent rings.

Theorem 2.1. The following statements are equivalent for a ring R:

(1) R is right n-coherent.

(2) If the sequence

\begin{equation}
0 \to M \xrightarrow{d_0} E_0 \xrightarrow{d_1} E_1 \xrightarrow{d_2} \cdots \xrightarrow{d_{n-1}} E_{n-1} \xrightarrow{d_n} E_n
\end{equation}

is exact, where each E_i is a finitely cogenerated injective right R-module, then there exists an exact sequence of right R-modules

\begin{equation}
0 \to M \xrightarrow{d_0} E_0 \xrightarrow{d_1} E_1 \xrightarrow{d_2} \cdots \xrightarrow{d_{n-1}} E_{n-1} \xrightarrow{d_n} E_n \xrightarrow{d_{n+1}} E_{n+1}
\end{equation}

where each E_i is finitely cogenerated injective.

(3) Every $(n-1)$-copresented factor module of a finitely cogenerated injective right R-module is n-copresented.
Proof. (1) ⇒ (2). By the exactness of (2.1), we have an exact sequence
\[0 \to M \xrightarrow{d_0} E_0 \xrightarrow{d_1} E_1 \xrightarrow{d_2} \cdots \xrightarrow{d_n} E_n \xrightarrow{d_{n+1}} E_{n+1} \to \frac{E_{n+1}}{Im(d_n)} \to 0. \]
Since \(R \) is right \(n \)-coherent, \(M \) is \((n + 1)\)-copresented. So by Proposition 1.2, \(E_{n+1}/\text{Im}(d_n) \) is finitely cogenerated. Let \(E_{n+1} = E(\frac{E_{n+1}}{\text{Im}(d_n)}) \). Then (2.2) is exact.

(2) ⇒ (1) is clear, and (1) ⇔ (3) follows by Proposition 1.2. □

Definition 2.2. Let \(n, d \) be non-negative integers. Then a right \(R \)-module \(M \) is called \((n, d)\)-projective if \(\text{Ext}^{d+1}_R(M, A) = 0 \) for every \(n \)-copresented right \(R \)-module \(A \).

Recall that a module \(M_R \) is called FCP-projective [16] if \(\text{Ext}^1_R(M, A) = 0 \) for every finitely copresented right \(R \)-module \(A \), and module \(M_R \) is called FCG-projective [14] if \(\text{Ext}^1_R(M, A) = 0 \) for every finitely cogenerated right \(R \)-module \(A \). It is obvious that \(M \) is \((0, 0)\)-projective (respectively, \((1, 0)\)-projective) if and only if \(M \) is FCG-projective (respectively, FCP-projective). For a given \(d \), every \((m, d)\)-projective module is \((n, d)\)-projective for every \(m \leq n \).

Proposition 2.3. Let \(\{M_i\}_{i \in I} \) be a family of right \(R \)-modules. Then \(\bigoplus_{i \in I} M_i \) is \((n, d)\)-projective if and only if each \(M_i \) is \((n, d)\)-projective.

Proof. Follows by the isomorphism \(\text{Ext}^{d+1}_R(\bigoplus_{i \in I} M_i, A) \cong \prod_{i \in I} \text{Ext}^{d+1}_R(M_i, A) \). □

Proposition 2.4. Let \(P \) be a projective right \(R \)-module and let \(K \) be its submodule. If \(P/K \) is \((n, d)\)-projective, then \(K \) is \((n + 1, d)\)-projective.

Proof. Let \(A \) be an \((n + 1)\)-copresented right \(R \)-module. Then there exists an exact sequence \(0 \to A \to E \to B \to 0 \), where \(E \) is a finitely cogenerated injective module and \(B \) is \(n \)-copresented. Thus we get two exact sequences
\[
0 = \text{Ext}_R^{d+1}(P, A) \to \text{Ext}_R^{d+1}(K, A) \to \text{Ext}_R^{d+2}(P/K, A) \to \text{Ext}_R^{d+2}(P, A) = 0
\]
and
\[
0 = \text{Ext}_R^{d+1}(P/K, E) \to \text{Ext}_R^{d+1}(P/K, B) \to \text{Ext}_R^{d+2}(P/K, A) \to \text{Ext}_R^{d+2}(P/K, E) = 0.
\]
Hence \(\text{Ext}_R^{d+1}(K, A) \cong \text{Ext}_R^{d+1}(P/K, B) = 0 \), and it follows that \(K \) is \((n + 1, d)\)-projective. □
Recall that a short exact sequence of right R-modules $0 \to A \to B \to C \to 0$ is called copure [4] if every finitely copresented right R-module is injective with respect to the exact sequence, and a submodule A of a right R-module B is said to be copure in B if the exact sequence $0 \to A \to B \to B/A \to 0$ is copure.

Proposition 2.5. Let $n \geq d+1$. Then every copure factor module of an (n,d)-projective module is (n,d)-projective. In particular, every copure factor module of an FCP-projective module is FCP-projective.

Proof. Let N be a copure factor module of an (n,d)-projective module M. Then there exists a copure exact sequence of right R-modules $0 \to K \to M \to N \to 0$. For a given n-copresented module A with a finite n-copresentation $0 \to A \to E_0 \to E_1 \to \cdots \to E_n$, let $L = \text{coker}(E_{d-2} \to E_{d-1})$. Then since $n \geq d+1$, A is $(d+1)$-copresented, and so L is finitely copresented. Since $\text{Ext}^1_R(M,L) \cong \text{Ext}^{d+1}_R(M,A) = 0$, we have an exact sequence $\text{Hom}(M,L) \xrightarrow{\partial} \text{Hom}(K,L) \xrightarrow{f^*} \text{Ext}^1_R(N,L) \to 0$. Noting that f^* is epic because N is a copure factor module of M, we have that $\partial = 0$, and hence $\text{Ext}^1_R(N,L) = 0$. Thus, $\text{Ext}^{d+1}_R(N,A) \cong \text{Ext}^1_R(N,L) = 0$, as required. \[\square \]

Definition 2.6. A short exact sequence of right R-modules $0 \to A \to B \to C \to 0$ is called n-copure if every n-copresented right R-module is injective with respect to the exact sequence. A submodule A of a right R-module B is called n-copure in B if the exact sequence $0 \to A \to B \to B/A \to 0$ is n-copure.

Next, we give some characterizations of $(n,0)$-projective modules.

Theorem 2.7. Let n be a positive integer and let M be a right R-module. Then the following statements are equivalent:

1. M is $(n,0)$-projective.
2. M is projective with respect to exact sequence $0 \to A \to B \to C \to 0$ of right R-modules with A n-copresented.
3. If N is an $(n-1)$-copresented factor module of a finitely cogenerated injective right R-module E, then every right R-homomorphism f from M to N lifts to a homomorphism from M to E.
4. Every exact sequence $0 \to M'' \to M' \to M \to 0$ is n-copure.
5. There exists an n-copure exact sequence $0 \to K \to P \to M \to 0$ of right R-modules with P projective.
6. There exists an n-copure exact sequence $0 \to K \to P \to M \to 0$ of right R-modules with P $(n,0)$-projective.
Proof. (1) \Rightarrow (2). Follows by the exact sequence $\text{Hom}(M, B) \to \text{Hom}(M, C) \to \text{Ext}^1_R(M, A) = 0$.

(2) \Rightarrow (3). Since the kernel of the natural epimorphism $E \to N$ is n-copresented, (3) follows immediately from (2).

(3) \Rightarrow (1). For any n-copresented module A, there exists an exact sequence $0 \to A \to E \to N \to 0$, where E is a finitely cogenerated injective module and N is $(n - 1)$-copresented. So we get an exact sequence $\text{Hom}(M, E) \to \text{Hom}(M, N) \to \text{Ext}^1_R(M, A) \to \text{Ext}^1_R(M, E) = 0$, and thus $\text{Ext}^1_R(M, A) = 0$ by (3).

(1) \Rightarrow (4). Assume (1). Then we have an exact sequence

$$\text{Hom}(M', A) \to \text{Hom}(M'', A) \to \text{Ext}^1_R(M, A) = 0$$

for every n-copresented module A, and so (4) follows.

(4) \Rightarrow (5) \Rightarrow (6) are obvious.

(6) \Rightarrow (1). By (6), we have an n-cure exact sequence $0 \to K \xrightarrow{f} P \to M \to 0$ of right R-modules with P $(n, 0)$-projective, and so, for each n-copresented module A, we have an exact sequence $\text{Hom}(P, A) \xrightarrow{f^*} \text{Hom}(K, A) \to \text{Ext}^1_R(M, A) \to \text{Ext}^1_R(P, A) = 0$ with f^* epic. This implies that $\text{Ext}^1_R(M, A) = 0$, and (1) follows. □

Definition 2.8. (1). The (n, d)-projective dimension of a module M_R is defined by

$$(n, d)-\text{pd}(M_R) = \inf\{k : \text{Ext}^{k+d+1}_R(M, A) = 0 \text{ for every } n\text{-copresented } A\}$$

(2). The right (n, d)-projective global dimension of a ring R is defined by

$$r.(n, d)\text{-PD}(R) = \sup\{(n, d)-\text{pd}(M) : M \text{ is a right } R\text{-module}\}$$

Lemma 2.9. Let R be a right n-cocoherent ring and M a right R-module. Then the following statements are equivalent:

(1) $(n, d)-\text{pd}(M) \leq k$.

(2) $\text{Ext}^{k+d+1}_R(M, A) = 0$ for every n-copresented right R-module A.

Proof. (1) \Rightarrow (2). Use induction on k. Clear if $(n, d)-\text{pd}(M) = k$. Let $(n, d)-\text{pd}(M) \leq k - 1$. Since A is n-copresented, there exists an exact sequence $0 \to A \to E \to N \to 0$, where E is a finitely cogenerated injective module and N is $(n - 1)$-copresented. Since R is right n-cocoherent, by Theorem 2.1, N is n-copresented, and so $\text{Ext}^{k+d+1}_R(M, A) \cong \text{Ext}^{k+d}_R(M, N) = 0$ by induction hypothesis.

(2) \Rightarrow (1) is clear. □
Corollary 2.10. Let R be a right n-cocoherent ring and M_R (n, d)-projective. Then $\text{Ext}^{d+k}_R(M, A) = 0$ for all n-copresented modules A and all positive integers k.

Corollary 2.11. Let R be a right n-cocoherent ring and M a right R-module. If the sequence $0 \to P_k \xrightarrow{f_k} P_{k-1} \xrightarrow{f_{k-1}} \cdots \to P_0 \xrightarrow{f_0} M \to 0$ is exact with P_0, \cdots, P_{k-1} (n, d)-projective, then $\text{Ext}^{k+d+1}_R(M, A) \cong \text{Ext}_R^1(P_k, A)$ for any n-copresented right R-module A.

Proof. Since R is right n-cocoherent and $P_0, P_1, \cdots, P_{k-1}$ are (n, d)-projective, by Corollary 2.10, we have

$$\text{Ext}^{k+d+1}_R(M, A) \cong \text{Ext}^{k+d}_R(\ker(f_0), A) \cong \text{Ext}^{k+d-1}_R(\ker(f_1), A) \cong \cdots \cong \text{Ext}^{d+1}_R(\ker(f_{k-1}), A) = \text{Ext}^{d+1}_R(P_k, A).$$

Theorem 2.12. Let R be a right n-cocoherent ring, M a right R-module and k a non-negative integer. Then the following statements are equivalent:

1. (n, d)-pd(M_R) $\leq k$.
2. $\text{Ext}^{k+d+l}_R(M, A) = 0$ for all n-copresented modules A and all positive integers l.
3. $\text{Ext}^{k+d+1}_R(A, M) = 0$ for all n-copresented modules A.
4. If the sequence $0 \to P_k \to P_{k-1} \to \cdots \to P_0 \to M \to 0$ is exact with P_0, \cdots, P_{k-1} (n, d)-projective, then P_k is also (n, d)-projective.
5. There exists an exact sequence $0 \to P_k \to P_{k-1} \to \cdots \to P_0 \to M \to 0$ of right R-modules with $P_0, \cdots, P_{k-1}, P_k$ (n, d)-projective.

Proof. (1) \Rightarrow (2). Assume (1), then (n, d)-pd(M_R) $\leq k + l - 1$, and so (2) follows from Lemma 2.9.

(2) \Rightarrow (3) and (4) \Rightarrow (5) are obvious. (3) \Rightarrow (4) and (5) \Rightarrow (1) follow by Corollary 2.11.

3. n-cosemihereditary rings and n-V-rings

We set $\mu_R(M) = \sup\{n \mid M$ has a finite n-copresentation}, except that we set $\mu_R(M) = -1$ if M is not finitely cogenerated.

Definition 3.1. Let R be a ring and n a non-negative integer. Then the right n-codimension of R is defined by

$$r.n\text{-codim}(R) = \sup\{\text{id}(M_R) \mid M$ is an n-copresented right R-module\}
Definition 3.2. Let R be a ring and n, d non-negative integers. Then R is said to be a right co-(n,d)-ring if every right R-module is (n, d)-projective.

It is easy to see that a ring R is a right co-(n,d)-ring if and only if every n-copresented right R-module has injective dimension at most d if and only if $r.n$-codim$(R) \leq d$. If $n \leq n'$ and $d \leq d'$, then every right co-(n,d)-ring is a right co-(n',d')-ring.

Lemma 3.3. Let R be a ring and M an n-copresented right R-module. Then M is injective if and only if $\text{Ext}_1^R(A, M) = 0$ for all right R-modules A such that $r.n$-codim$(A) \leq n - 1$.

Proof. The necessity is clear. To prove the sufficiency, let $0 \to M \to E \to N \to 0$ be exact with E finitely cogenerated injective module. Then N is $(n-1)$-copresented, so $\text{Ext}_1^R(N, M) = 0$ by hypothesis. It follows that $\text{Hom}_R(E, M) \to \text{Hom}_R(N, M)$ is surjective, so M is isomorphic to a direct summand of E, and hence M is injective. □

Lemma 3.4. Let R be a ring and M an n-copresented right R-module. Then $\text{id}(M_R) \leq d$ if and only if $\text{Ext}_1^{d+1}_R(A, M) = 0$ for all right R-modules A such that $\mu_R(A) \geq n - (d+1)$.

Proof. The necessity is clear. The sufficiency is obvious if $d \geq n$. If $d < n$, then since M is n-copresented, there exists an exact sequence of right R-modules $0 \to M \xrightarrow{\lambda} E_0 \xrightarrow{f_0} E_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{d-2}} E_{d-1} \xrightarrow{f_{d-1}} \text{im}(f_{d-1}) \to 0$, where each E_i is a finitely cogenerated injective module and im(f_{d-1}) is $(n-d)$-copresented. Thus for each right R-module A such that $\mu_R(A) \geq n - (d+1)$, we have $\text{Ext}_1^R(A, \text{im}(f_{d-1})) \cong \text{Ext}_1^{d+1}_R(A, M) = 0$ by hypothesis. It follows that $\text{im}(f_{d-1})$ is injective. Follows by Lemma 3.3, and therefore $\text{id}(M_R) \leq d$. □

Theorem 3.5. Let $n,d \geq 1$. Then the following statements are equivalent for a ring R:

1. R is a right co-(n,d)-ring.
2. $\text{Ext}_1^{d+1}_R(M, N) = 0$ for all right R-modules M, N such that $\mu_R(N) \geq n$ and $\mu_R(M) \geq n - (d+1)$.

Proof. (1) ⇒ (2) is clear. (2) ⇒ (1) Follows by Lemma 3.4. □

Definition 3.6. A ring R is called right n-cosemihereditary, if every submodule of a projective right R-module is $(n, 0)$-projective.
Clearly, a ring R is right cosemihereditary if and only if it is right 1-cosemihereditary, and right n-cosemihereditary ring is right $(n + 1)$-cosemihe-reditary.

Theorem 3.7. Let $n \geq 1$. Then the following statements are equivalent for a ring R:

1. R is a right n-cosemihereditary ring.
2. R is a right co-$(n, 1)$-ring.
3. $\text{Ext}_R^2(M, N) = 0$ for all right R-modules M, N such that $\mu_R(N) \geq n$ and $\mu_R(M) \geq n - 2$.
4. Every $(n-1)$-copresented factor module of a finitely cogenerated injective right R-module is injective.
5. R is right n-cocoherent and $r.(n, 0)\text{-PD}(R) \leq 1$.
6. Every submodule of an $(n, 0)$-projective right R-module is $(n, 0)$-projective.

Proof. (1) \Rightarrow (2). Let A be any right R-module and M any n-copresented right R-module. Then there exists an exact sequence $0 \to K \to P \to A \to 0$ with P projective. By (1), K is $(n, 0)$-projective, thus we have an exact sequence $0 = \text{Ext}_R^1(K, M) \to \text{Ext}_R^2(A, M) \to \text{Ext}_R^2(P, M) = 0$.

And so $\text{Ext}_R^2(A, M) = 0$, as required.

(2) \iff (3). Follows by Theorem 3.5.

(2) \Rightarrow (4). Let N be an $(n - 1)$-copresented factor module of a finitely cogenerated injective right R-module E. Then there exists an exact sequence of right R-modules $0 \to K \to E \to N \to 0$. Since K is n-copresented, by (2), $\text{Ext}_R^2(M, K) = 0$ for every right R-module M. And so $\text{Ext}_R^1(M, N) = 0$ for every right R-module M because the sequence $0 = \text{Ext}_R^1(M, E) \to \text{Ext}_R^1(M, N) \to \text{Ext}_R^2(M, K) = 0$ is exact, as required.

(4) \Rightarrow (5). By (4), every $(n - 1)$-copresented factor module of a finitely cogenerated injective right R-module is injective, and hence n-copresented, so R is right n-cocoherent by Theorem 2.1. Now let A be an n-copresented right R-module. Then we have an exact sequence $0 \to A \to E \to L \to 0$ of right R-modules, where E is finitely cogenerated and injective, L is $(n - 1)$-copresented. By hypothesis, L is injective. So, for any right R-module M, the exact sequence $0 = \text{Ext}_R^1(M, L) \to \text{Ext}_R^2(M, A) \to \text{Ext}_R^2(M, E) = 0$ implies that $\text{Ext}_R^2(M, A) = 0$. It shows that $r.(n, 0)\text{-PD}(R) \leq 1$.

(5) \Rightarrow (6). Let M be an $(n, 0)$-projective right R-module and K its submodule. Then for any n-copresented module A, we have an exact
sequence $0 = \text{Ext}_R^1(M, A) \to \text{Ext}_R^1(K, A) \to \text{Ext}_R^2(M/K, A) = 0$ by (5) and Lemma 2.9. It follows that $\text{Ext}_R^1(K, A) = 0$, and so K is $(n, 0)$-projective.

(6) \Rightarrow (1). It is obvious.

Next, we generalize the concept of right V-rings to right n-V-rings.

Definition 3.8. A ring R is called right n-V-ring if it is a right co-$(n,0)$-ring.

Clearly, R is a right V-ring if and only if it is a right 1-V-ring, and a right n-V-ring is a right $(n + 1)$-V-ring.

Theorem 3.9. The following conditions are equivalent for a ring R:

1. R is a right n-V-ring.
2. Every right R-module is $(n, 0)$-projective.
3. Every finitely cogenerated right R-module is $(n, 0)$-projective.
4. R is right n-cosemihereditary and $E(S)$ is $(n, 0)$-projective for every simple right R-module S.
5. R is right n-cocoherent and every n-copresented right R-module is $(n, 0)$-projective.
6. Every n-copresented right R-module is injective.

Proof. (1) \Rightarrow (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (4). Assume (3). Then clearly $E(S)$ is $(n, 0)$-projective. Let E be a finitely cogenerated injective module and N an $(n - 1)$-copresented factor module of E. By (3), N is $(n, 0)$-projective, so by Theorem 2.7(3), N is isomorphic to a direct summand of E and hence N is injective. Therefore, R is right n-cosemihereditary by Theorem 3.7.

(4) \Rightarrow (5). Assume (4). Since R is right n-cosemihereditary, it is right n-cocoherent by Theorem 3.7. Now let M be an n-copresented right R-module, then there exists an exact sequence of right R-modules

$$0 \to M \to E,$$

where E is finitely cogenerated injective module. Since $E \cong \bigoplus_{i=1}^k E_i$ for some simple modules $E_i, i = 1, 2, \cdots, k$ and each E_i is $(n, 0)$-projective, by Proposition 2.3, E is $(n, 0)$-projective. Observing that R is right n-cosemihereditary, by Theorem 3.7, M is $(n, 0)$-projective.

(5) \Rightarrow (6). Let M be an n-copresented right R-module. Since R is right n-cocoherent, and M is $(n + 1)$-copresented, so there exists an exact sequence $0 \to M \to E \to N \to 0$ of right R-modules, where E is finitely cogenerated injective, and N is n-copresented. By hypothesis,
N is $(n,0)$-projective, so N is projective with respect to this exact sequence. This follows that M is isomorphic to a direct summand of E, and therefore M is injective.

(6) \Rightarrow (1). It is clear.

\[\square \]

Acknowledgments

The author wish to thank the referee for the useful comments.

References

(Zhanmin Zhu) Department of Mathematics, Jiaxing University, 314001, Jiaxing, Zhejiang Province, P. R. China

E-mail address: zhanmin.zhu@hotmail.com