Title:
Some results on value distribution of the difference operator

Author(s):
Y. Liu, J. P. Wang and F. H. Liu
SOME RESULTS ON VALUE DISTRIBUTION OF THE DIFFERENCE OPERATOR

Y. LIU*, J. P. WANG AND F. H. LIU

(Communicated by Ali Abkar)

Abstract. In this article, we consider the uniqueness of the difference monomials $f^m(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^m(z)f(z+c)) = E_k(1, g^m(z)g(z+c))$. Then we prove that if one of the following holds (i) $n \geq 14$ and $k \geq 3$, (ii) $n \geq 16$ and $k = 2$, (iii) $n \geq 22$ and $k = 1$, then $f(z) \equiv t_1 g(z)$ or $f(z)g(z) = t_2$, for some constants t_1 and t_2 that satisfy $t_1^{n+1} = 1$ and $t_2^{n+1} = 1$. We generalize some previous results of Qi et. al.

Keywords: Meromorphic functions, difference equations, uniqueness, finite order.

MSC(2010): Primary: 30D35; Secondary: 39B12

1. Introduction and main results

In this article, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna theory (see, e.g., [8,18]). Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions in the complex plane. By $S(r,f)$, we denote any quantity satisfying $S(r,f) = o(T(r,f))$ as $r \to \infty$, possibly outside a set of finite logarithmic measure. Then the meromorphic function a is called a small function of $f(z)$, if $T(r,a) = S(r,f)$. If $f(z) - a$ and $g(z) - a$ have same zeros, counting multiplicity (ignoring multiplicity), then we say $f(z)$ and $g(z)$ share the small function a CM (IM).

Let a be a finite complex number, and k be a positive integer. We denote by $N_k(r, \frac{1}{T-a})$ the counting function for the zeros of $f(z)-a$ with multiplicity $\leq k$, and by $\bar{N}_k(r, \frac{1}{T-a})$ the corresponding one for which multiplicity is not counted. Let $N_k(r, \frac{1}{T-a})$ be the counting function for the zeros of $f(z) - a$ with multiplicity $\geq k$, and $\bar{N}_k(r, \frac{1}{T-a})$ be the corresponding one for which multiplicity is
not counted. Moreover, we set \(N_k(r, \frac{1}{f^n}) = N(r, \frac{1}{f^n}) + N_2(r, \frac{1}{f^n}) + \cdots + N_k(r, \frac{1}{f^n}) \). In the same way, we can define \(N_k(r, f) \).

Currently, many articles have focused on value distribution in difference analogues of meromorphic functions (see, e.g., [1, 2, 5–7, 9–17, 19]). In particular, there has been an increasing interest in studying the uniqueness problems related to meromorphic functions and their shifts or their difference operators (see, e.g., [1, 9, 11–15]). Our aim in this article is to investigate the uniqueness problems of difference monomials of meromorphic functions.

In 2010, Qi et al. [16] studied the uniqueness of the difference monomials and obtained the following result:

Theorem 1.1. Let \(f(z) \) and \(g(z) \) be transcendental entire functions with finite order, \(c \) a non-zero complex constant; and \(n \geq 6 \) an integer. If \(E(1, f^n(z)f(z + c)) = E(1, g^n(z)g(z + c)) \), then \(f(z) \equiv t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

In this paper, we consider the case of meromorphic functions of Theorem A. Our result can be stated as follows:

Lemma 1.2. Let \(c \in \mathbb{C} \setminus \{0\} \). Let \(f(z) \) and \(g(z) \) be two transcendental meromorphic functions with finite order, and \(n \geq 14 \), \(k \geq 3 \) be two positive integers. If \(E_k(1, f^n(z)f(z + c)) = E_k(1, g^n(z)g(z + c)) \), then \(f(z) \equiv t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

In the previous theorem we considered the case \(k \geq 3 \). The following two theorems are about the case \(k \leq 2 \).

Theorem 1.3. Let \(c \in \mathbb{C} \) and \(n \geq 16 \) be an integer. Let \(f(z) \) and \(g(z) \) be two transcendental meromorphic functions with finite order. If \(E_2(1, f^n(z)f(z + c)) = E_2(1, g^n(z)g(z + c)) \), then \(f(z) \equiv t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

Theorem 1.4. Let \(c \in \mathbb{C} \) and \(n \geq 22 \) be an integer. Let \(f(z) \) and \(g(z) \) be two transcendental meromorphic functions with finite order. If \(E_4(1, f^n(z)f(z + c)) = E_4(1, g^n(z)g(z + c)) \), then \(f(z) \equiv t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

2. Preliminary lemmas

Before proceeding to the actual proofs, we recall a few lemmas that play an important role in the reasoning.

Lemma 2.1. [3] Let \(f \) and \(g \) be two meromorphic functions, and let \(k \) be a positive integer. If \(E_k(1, f) = E_k(1, g) \), then one of the following cases must occur:
1. \[T(r,f) + T(r,g) \leq N_2(r,f) + N_2(r,\frac{1}{f}) + N_2(r,g) + N_2(r,\frac{1}{g}) \]
\[+N\left(r,\frac{1}{f-1}\right) + N\left(r,\frac{1}{g-1}\right) - N_1\left(r,\frac{1}{f-1}\right) + N_{k+1}\left(r,\frac{1}{f-1}\right) \]
\[= N_{k+1}\left(r,\frac{1}{g-1}\right) + S(r,f) + S(r,g); \]
\[(2.1) \]

2. \[f = \frac{(b + 1)g + (a - b - 1)}{bg + (a - b)}, \]
where \(a \neq 0\), \(b\) are two constants.

Lemma 2.2. Let \(f(z)\) be a nonconstant finite order meromorphic function and let \(c \neq 0\) be an arbitrary complex number. Then
\[T(r, f(z + |c|)) = T(r, f(z)) + S(r,f). \]

Remark 2.3. It is shown in [4, p. 66], that for \(c \in \mathbb{C} \setminus \{0\}, \)
\[(1 + o(1))T(r - |c|, f(z)) \leq T(r, f(z + c)) \leq (1 + o(1))T(r + |c|, f(z)) \]
hold as \(r \to \infty\), for a general meromorphic function. By this and Lemma 2.2, we obtain
\[T(r, f(z + c)) = T(r, f(z)) + S(r,f). \]

Lemma 2.4. Let \(f(z)\) and \(g(z)\) be two meromorphic functions with finite order, \(n \geq 8\) a positive integer, and let \(F = f^n(z)f(z + c)\) and \(G = g^n(z)g(z + c)\). If
\[F = \frac{(b + 1)G + (a - b - 1)}{bg + (a - b)}, \]
where \(a \neq 0\), \(b\) are two constants, then \(f(z) = t_1g(z)\) or \(f(z)g(z) = t_2\), for some constants \(t_1\) and \(t_2\) that satisfy \(t_1^{n+1} = 1\) and \(t_2^{n+1} = 1\).

Proof of Lemma 2.3. Remark 2.3 yields that
\[T(r, F) = T(r, f^n(z)f(z + c)) + S(r,f) \]
\[\leq T(r, f^n(z)) + T(r, f(z + c)) + S(r,f) \]
\[= (n + 1)T(r, f) + S(r,f). \]

On the other hand, together the first main Theorem with Remark 2.3, we obtain
\[nT(r,f) = T(r, f^n(z)) + S(r,f) \]
\[\leq T(r, f^n(z)f(z + c)) + T\left(r, \frac{1}{f(z + c)}\right) + S(r,f) \]
\[= T(r, f(z)) + T(r, F(z)) + S(r,f) \]
\[(2.7) \]
that is,
(2.8) \[T(r, F) \geq (n - 1)T(r, f) + S(r, f) \]

Hence, (2.4) and (2.6) yield that
(2.9) \[S(r, F) = S(r, f). \]

Similarly, we obtain
(2.10) \[T(r, G) \geq (n - 1)T(r, g) + S(r, g), \]

and
(2.11) \[S(r, G) = S(r, g). \]

Set \(I_1 = \{ r : T(r, g) \geq T(r, f) \} \subseteq (0, \infty), \) and \(I_2 = (0, \infty) \setminus I_1. \) Then there is at least one \(I_i (i = 1, 2) \) such that \(I_i \) has infinite logarithmic measure. Without loss of generality, we may suppose that \(I_1 \) has infinite logarithmic measure. We break the rest of the proof into three cases. □

Case 1. \(b \neq 0, -1. \) If \(a - b - 1 \neq 0, \) then we know from 2.3

(2.12) \[N\left(r, \frac{1}{F}\right) = N\left(r, \frac{1}{G - \frac{a-b-1}{b+1}}\right). \]

Together with the first main theorem, the second main theorem with Remark 2.3, 2.8 and 2.12, we obtain

\[
(n - 1)T(r, g) \leq T(r, G) + S(r, g) \\
\quad \leq N\left(r, \frac{1}{G}\right) + N(r, G) + N\left(r, \frac{1}{G - \frac{a-b-1}{b+1}}\right) + S(r, G) + S(r, g) \\
\quad = N\left(r, \frac{1}{G}\right) + N(r, G) + N\left(r, \frac{1}{F}\right) + S(r, g) \\
\quad \leq N\left(r, \frac{1}{g}\right) + N\left(r, \frac{1}{g(z+c)}\right) + N(r, g) + N(r, g(z+c)) \\
\quad \quad + N\left(r, \frac{1}{f(z+c)}\right) + S(r, g) \\
\quad \leq 4T(r, g) + 2T(r, f) + S(r, g) \\
\quad \leq 6T(r, g) + S(r, g), \quad r \in I_1
\]

which is impossible, since \(n \geq 8. \) Hence, we obtain \(a - b - 1 = 0, \) so

\[F(z) = \frac{(b+1)G(z)}{bG(z) + 1}. \]
Using the similar method as above, we obtain
\[
(n - 1)T(r, g) \leq T(r, G) + S(r, g)
\]
\[
\leq \mathcal{N}\left(r, \frac{1}{G}\right) + \mathcal{N}(r, G) + \mathcal{N}\left(r, \frac{1}{G + \varepsilon}\right) + S(r, G)
\]
\[
= \mathcal{N}\left(r, \frac{1}{G}\right) + \mathcal{N}(r, G) + \mathcal{N}(r, F) + S(r, G)
\]
\[
\leq 6T(r, g) + S(r, g), \quad r \in I_1
\]
which is a contradiction, since \(n \geq 8 \).

Case 2. \(b = -1, a \neq -1 \). By 2.3, we have
\[
(2.15) \quad F = \frac{a}{a + 1 - G}.
\]

Similarly, we get a contradiction, hence, we obtain \(a = -1 \). So, we get \(FG = 1 \), that is \(f^n(z)f(z + c)g^n(z)g(z + c) = 1 \). Set \(H(z) = f(z)g(z) \). Suppose that \(H(z) \) is not a constant. Then we obtain
\[
(2.16) \quad H^n(z)H(z + c) = 1.
\]

Remark 2.3, the first main Theorem and 2.16 imply that
\[
(2.17) \quad nT(r, H(z)) = T(r, H^n(z)) = T\left(r, \frac{1}{H(z + c)}\right) = T(r, H(z)) + S(r, H).
\]

Hence \(H(z) \) must be a nonzero constant, since \(n \geq 8 \). Set \(H(z) = t_1 \), by 2.16, we know \(t_1^{n+1} = 1 \). Thus, \(f(z)g(z) = t_1 \), where \(t_1^{n+1} = 1 \).

Case 3. \(b = 0, a \neq 1 \). By 2.3, we obtain
\[
F = \frac{G + a - 1}{a}.
\]

Similarly, we get a contradiction, hence we obtain \(a = 1 \), so we get \(F = G \), that is
\[
f^n(z)f(z + c) = g^n(z)g(z + c).
\]
Let \(H(z) = \frac{f(z)}{g(z)} \), using the similar method as above, we also obtain that \(H(z) \) must be a nonzero constant. Thus, we have \(f = t_2g \), where \(t_2^{n+1} = 1 \).

3. **Proof of Theorem 1.1**

Let \(F(z) = f^n(z)f(z + c) \) and \(G(z) = g^n(z)g(z + c) \). Since \(k \geq 3 \), we have
\[
\mathcal{N}\left(r, \frac{1}{F - 1}\right) + \mathcal{N}\left(r, \frac{1}{G - 1}\right) - N_{1,1}\left(r, \frac{1}{F - 1}\right) + \mathcal{N}_{(k+1)}\left(r, \frac{1}{F - 1}\right)
\]
\[
+ \mathcal{N}_{(k+1)}\left(r, \frac{1}{G - 1}\right) \leq \frac{1}{2}N\left(r, \frac{1}{F - 1}\right) + \frac{1}{2}N\left(r, \frac{1}{G - 1}\right)
\]
\[
(3.1) \quad \leq \frac{1}{2}T(r, F) + \frac{1}{2}T(r, G) + S(r, f) + S(r, g).
\]
Some results on value distribution of the difference operator

2.1 and 3.1 give that

\[T(r, F) + T(r, G) \leq 2 \left\{ N_2 \left(r, \frac{1}{F} \right) + N_2(r, F) + N_2 \left(r, \frac{1}{G} \right) + N_2(r, G) \right\} + S(r, f) + S(r, g). \]

Together the definition of \(F \), the first main Theorem with Remark 2.3, we have

\[N_2 \left(r, \frac{1}{F} \right) \leq 2N \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{f(z+c)} \right) + S(r, f) \]

(3.3)

\[\leq 3T(r, f) + S(r, f). \]

Similarly,

\[N_2 \left(r, \frac{1}{G} \right) \leq 3T(r, g) + S(r, f), \]

(3.4)

\[N_2(r, F) \leq 3T(r, f) + S(r, f), \]

(3.5)

\[N_2(r, G) \leq 3T(r, g) + S(r, f). \]

(3.2)-(3.6) yield that

\[T(r, F) + T(r, G) \leq 12(T(r, f) + T(r, g)) + S(r, f) + S(r, g). \]

Then, by (2.6), (2.8) and (3.7), we obtain

\[(n - 13)|T(r, f) + T(r, g)| \leq S(r, f) + S(r, g), \]

which is a contradiction since \(n \geq 14 \). Hence, by Lemma 2.1, we have \(F = (b + 1)G + \frac{(a-b-1)}{(4 + a-b)} \), where \(a \neq 0, b \) are two constants. By Lemma 2.3, we get \(f(z) \equiv t_1 g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

4. Proof of Theorem 1.2

Note that

\[N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) - N_{11} \left(r, \frac{1}{F-1} \right) + \frac{1}{2} N_{10} \left(r, \frac{1}{F-1} \right) + \frac{1}{2} N_{10} \left(r, \frac{1}{G-1} \right) \]

\[\leq \frac{1}{2} N \left(r, \frac{1}{F-1} \right) + \frac{1}{2} N \left(r, \frac{1}{G-1} \right) \]

(4.1)

\[\leq \frac{1}{2} T(r, F) + \frac{1}{2} T(r, G) + S(r, f) + S(r, g). \]

Then we obtain from 2.1 and 4.1

\[T(r, F) + T(r, G) \leq 2 \left\{ N_2 \left(r, \frac{1}{F} \right) + N_2(r, F) + N_2 \left(r, \frac{1}{G} \right) + N_2(r, G) \right\} \]

\[+ N_{10} \left(r, \frac{1}{F-1} \right) + N_{10} \left(r, \frac{1}{G-1} \right) + S(r, f) + S(r, g) \]
Obviously, combining the first main Theorem and Remark 2.3, we have
\[
\mathcal{N}(r, \frac{1}{F-1}) \leq \frac{1}{2} \mathcal{N}(r, \frac{F'}{F})
\]
\[
= \frac{1}{2} \mathcal{N}(r, \frac{F'}{F}) + S(r, f)
\]
\[
\leq \frac{1}{2} \mathcal{N}(r, F) + \frac{1}{2} \mathcal{N}(r, \frac{1}{F}) + S(r, f)
\]
\[
\leq \frac{1}{2} \left[\mathcal{N}(r, f(z)) + \mathcal{N}(r, f(z + c)) + \mathcal{N}(r, \frac{1}{f(z)}) + \mathcal{N}(r, \frac{1}{f(z + c)}) \right] + S(r, f) \leq 2T(r, f) + S(r, f).
\]

Similarly, we obtain
\[
\mathcal{N}(r, \frac{1}{G-1}) \leq 2T(r, g) + S(r, f)
\]

Suppose that
\[
T(r, F) + T(r, G) \leq 2 \left\{ N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + N_2(r, G) \right\}
\]
\[
+ \mathcal{N}(3, \frac{1}{F-1}) + \mathcal{N}(3, \frac{1}{G-1}) + S(r, f) + S(r, g).
\]

Then we have from 2.8, 2.10, 3.3-3.6 and 4.2-4.4
\[
(n - 1)T(r, f) + (n - 1)T(r, g) \leq T(r, F) + T(r, G)
\]
\[
\leq 14T(r, f) + 14T(r, g) + S(r, f) + S(r, g),
\]

which is a contradiction, since \(n \geq 16 \). By Lemma 2.1, we obtain that
\[
F = (b + 1)G + \frac{(a-b-1)}{\alpha \gamma a - a - b},
\]
where \(a \neq 0, b \) are two constants. By Lemma 2.3, we get \(f(z) = t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

5. Proof of Theorem 1.3

Since
\[
\mathcal{N}(r, \frac{1}{F-1}) + \mathcal{N}(r, \frac{1}{G-1}) - N_{11}(r, \frac{1}{F-1})
\]
\[
\leq \frac{1}{2} \mathcal{N}(r, \frac{1}{F-1}) + \frac{1}{2} \mathcal{N}(r, \frac{1}{G-1})
\]
\[
\leq \frac{1}{2} T(r, F) + \frac{1}{2} T(r, G) + S(r, f) + S(r, g).
\]

Then (2.1) becomes
\[
T(r, F) + T(r, G) \leq 2 \left\{ N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + N_2(r, G) + \mathcal{N}(2, \frac{1}{F-1}) + \mathcal{N}(2, \frac{1}{G-1}) \right\} + S(r, f) + S(r, g).
\]
Combining the first main Theorem and Remark 2.3, we obtain
\[N(2(r, \frac{1}{F-1})) \leq N(r, \frac{F}{F'}) \]
\[= N(r, \frac{F''}{F}) + S(r, f) \]
\[\leq N(r, F) + N(r, \frac{1}{F}) + S(r, f) \]
\[\leq N(r, f(z)) + N(r, f(z + c)) + N(r, \frac{1}{f(z)}) + N(r, \frac{1}{f(z + c)}) \]
\[+ S(r, f) \]
(5.2)

Similarly, we get
\[N(2(r, \frac{1}{G-1})) \leq 4T(r, f) + S(r, f). \]
(5.3)

Suppose that
\[T(r, F) + T(r, G) \leq 2\left(N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + N_2(r, G) \right) \]
\[+ N(2(r, \frac{1}{F-1})) + N_2(r, \frac{1}{G-1}) \right) + S(r, f) + S(r, g). \]
(5.4)

Then we obtain from 2.8, 2.10, 3.3-3.6 and 5.2-5.4
\[(n - 1)T(r, f) + (n - 1)T(r, g) \leq T(r, F) + T(r, G) \]
\[\leq 20T(r, f) + 20T(r, g) + S(r, f) + S(r, g), \]

which is impossible, since \(n \geq 22 \). By Lemma 2.1, we obtain that \(F = (b + 1)G + \frac{(a-b-1)}{M\alpha+n+b} \), where \(a \neq 0 \), \(b \) are two constants. By Lemma 2.3, we get \(f(z) \equiv t_1g(z) \) or \(f(z)g(z) = t_2 \), for some constants \(t_1 \) and \(t_2 \) that satisfy \(t_1^{n+1} = 1 \) and \(t_2^{n+1} = 1 \).

Acknowledgments

The work was supported by the NNSF of China (No.10771121, 11401387), the NSFC Tianyuan Mathematics Youth Fund (No. 11226094), the NSF of Shandong Province, China (No. ZR2012AQ020 and No. ZR2010AM030), the NSF of Zhejiang Province, China (No. Q14A10013) and the Fund of Doctoral Program Research of Shaoxing College of Art and Science(20135018).

References

(Yong Liu) DEPARTMENT OF MATHEMATICS, SHAOXING COLLEGE OF ARTS AND SCIENCES, SHAOXING, ZHEJIANG 312000, CHINA, DEPARTMENT OF PHYSICS AND MATHEMATICS, JOENSUU CAMPUS, UNIVERSITY OF EASTERN FINLAND, P.O. BOX 111, JOENSUU FI-80101, FINLAND
E-mail address: liuyongsdu@aliyun.com

(Jian-ping Wang) DEPARTMENT OF MATHEMATICS, SHAOXING COLLEGE OF ARTS AND SCIENCES, SHAOXING, ZHEJIANG 312000, CHINA
E-mail address: jpwang@usx.edu.cn

(Fang-hong Liu) DEPARTMENT OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG 250100, CHINA
E-mail address: liufanghong07@126.com