Embedding normed linear spaces into $C(X)$

Document Type: Research Paper

Authors

1 Department of Mathematics‎, ‎University of Isfahan‎, ‎Isfahan 81745--163‎, ‎Iran‎, ‎and‎, ‎School of Mathematics‎, ‎Institute for Research in Fundamental Sciences (IPM)‎, ‎P.O‎. ‎Box: ‎19395--5746‎, ‎Tehran‎, ‎Iran.

2 Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan 84156--83111‎, ‎Iran‎, ‎and‎, ‎School of Mathematics‎, ‎Institute for Research in Fundamental Sciences (IPM)‎, ‎P.O‎. ‎Box‎: ‎19395--5746‎, ‎Tehran‎, ‎Iran.

3 Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan 84156--83111‎, ‎Iran.

Abstract

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can indeed be chosen to be the Stone--Cech compactification of $L^*\setminus\{0\}$‎, ‎where $L^*\setminus\{0\}$ is endowed with the supremum norm topology.

Keywords

Main Subjects


L. Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. (2) 41 (1940), no. 1, 252--267.

S. Banach, Theorie des Operations Lineaires, (French) Reprint of the 1932 original, Editions Jacques Gabay, Sceaux, 1993.

E. Cech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823--844.

R. Engelking, General Topology, Heldermann Verlag, 2nd editition, Berlin, 1989.

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer--Verlag, New York, Heidelberg, 1976.

H. Hosseini Giv, Proving the Banach--Alaoglu theorem via the existence of the Stone-Cech compactification, Amer. Math. Monthly 121 (2014), no. 2, 167--169.

J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.

M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375--481.

A. Tychonoff, Uber die topologische Erweiterung von Raumen, Math. Ann. 102 (1930), no. 1, 544--561.


Volume 43, Issue 1
January and February 2017
Pages 131-135
  • Receive Date: 12 July 2015
  • Revise Date: 21 October 2015
  • Accept Date: 21 February 2017