On semi-$\Pi$-property of subgroups of finite group

Document Type : Research Paper


School of Applied Mathematics‎, ‎Chengu Information Technology‎, ‎Chengdu 610225‎, ‎P‎. ‎R‎. ‎China.


Let $G$ be a group and $H$ a subgroup of $G$‎. ‎ $H$ is said to have semi-$\Pi$-property in $G$ if there is a subgroup $T$ of $G$ such that $G=HT$ and $H\cap T$ has $\Pi$-property in $T$‎. ‎In this paper‎, ‎investigating on semi-$\Pi$-property of subgroups‎, ‎we shall obtain some new description of finite groups‎.


Main Subjects

X. Chen and W. Go, On weakly S-embedded and weakly embedded subgroups, Sib. Math. J. 54 (2013), no. 5, 931--945.
X. Chen and W. Guo, On the partial property of subgroups of finite groups, J. Group Theory 16 (2013), no. 5, 745--766.
W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963) 125--132.
K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
W. Guo, The Theory of Classes of Groups, Kluwer Acad. Publ. Group, Dordrecht, 2000.
W. Guo and A.N. Skiba, Finite groups with given s-embedded and n-embedded subgroups, J. Algebra 321 (2009), no. 10, 2843--2860.
B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
B. Li, On property and normality of subgroups of finite groups, J. Algebra 334 (2011), no. 11, 321--337.
B. Li, Finite groups with supplemented minimal subgroups, Comm. Algebra 41 (2013), no. 6, 2060--2070.
O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), no. 2, 431--460.
D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 2nd edition, New York, 1996.
A. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), no. 1, 192--209.
N. Su, Y. Li, and Y. Wang, A criterion of p-hypercyclically embedded subgroups of finite groups, J. Algebra 400 (2014) 82--93.
Y.Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 954--965.
M. Weinstein (ed.), Between Nilpotent and Solvable, Polygonal Publ. House, Washington, NJ, 1982.