A numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme

Document Type : Research Paper


Department of Mathematics‎, ‎School of Mathematical Sciences‎, ‎Vali-e-Asr University of Rafsanjan‎, ‎Rafsanjan‎, ‎Iran.


‎In this paper‎, ‎the fractional--order form of three dimensional chemostat model with variable yields is introduced‎. ‎The stability analysis of this fractional system is discussed in detail‎. ‎In order to study the dynamic behaviours of the mentioned fractional system‎, ‎the well known nonstandard (NSFD) scheme is implemented‎. ‎The proposed NSFD scheme is compared with the forward Euler and fourth order Runge--Kutta methods‎. ‎Numerical results show that the NSFD approach is easy and accurate when applied to fractional--order chemostat model.


Main Subjects

E. Ahmed, A.M.A. El-Sayed and H.A.A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems, Phys. Lett. A 358 (2006) 1--4.
E. Ahmed, A. Hashish and F.A. Rihan, On fractional order cancer model, J. Fract. Calc. Appl. 3 ( 2012) 1--6.
A.A.M. Arafa, S.Z. Rida and M. Khalil, Fractional modelling dynamics of HIV and CD4+ T--cells during primary infection, Nonlinear Biomedical Physics 6 (2012), Article 1.
J. Arino, S.S. Pilyugin and G.S.K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth and competition in chemostat models, Can. Appl. Math. Q. 11 (2003), no. 2, 107--142.
K. Assaleh and W.M. Ahmad, Modeling of speech signals using fractional calculus, in: Proceedings of the 9th International Symposiumon Signal Processing and its Applica-tions (ISSPA07), Sharjah, United Arab Emirates, February 2007.
W.C. Chen, Nonlinear dynamics and chaos in a fractional--order financial system, Chaos Solitons Fractals 36 (2008), 1305--1314.
L.P. Chen, Y. Chai, R.C. Wu and J. Yang, Stability and stabilization of a class of nonlinear fractional-order systems with caputo derivative, IEEE Trans. Circuits Syst. II, 59 (2012) 602--606.
L.P. Chen, Y.G. He, Y. Chai and R.C. Wu, New results on stability and stabilization of a class of nonlinear fractional-order systems, Nonlinear Dynam. 75 (2014), no. 4, 633--641.
K.S. Cole, Electric conductance of biological systems, in: Cold Spring Harbor Symposia on Quantitative Biology, pp. 107--116, 1993.
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 2003) 3413--3442.
W.H. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal. 72 (2010), no. 3-4, 1768--1777.
A.M.A. El--Sayed, A.E.M. El--Mesiry and H.A.A. El--Saka, On the fractional--order logistic equation, Appl. Math. Lett. 20 (2007), no. 7, 817--823.
Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology 12 (2012), Article ID 12400088, 13 pages.
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
X. Huang and L. M. Zhu, Bifurication in the stable manifold of the bioreactor with nth and mth order polynomial yields, J. Math. Chem. 46 (2009) 199--213.
Y. Li, Y.Q. Chen and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica J. IFAC 45 (2009), no. 8, 1965--1969.
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl. 332 (2007), no. 1, 709--726.
D. Matignon, Stability result on fractional differential equations with applications to control processing, in: Computational Engineering in Systems Applications, pp. 963-- 968, 1996.
R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, 1994.
R.E. Mickens, Discretizations of nonlinear differential equations using explicit nonstandard methods, J. Comput. Appl. Math. 110 (1999), no. 1, 181--185.
R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2000.
R.E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, Wiley--Interscience, Singapore, 2005.
R.E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23 (2007), no. 3, 672--691.
R.E. Mickens and A. Smith, Finite--difference models of ordinary differential equations: inuence of denominator functions, J. Franklin Inst. 327 (1990), 143--149.
T. Patarinska, D. Dochain, S. N. Agathos and L. Ganovski, Modelling of continuous microbial cultivation taking into account the memory effects, Bioprocess Engineering 22 (2000) 517--527.
M. Petrova, P. Koprinkova and T. Patarinska, Neural network modelling of fermentation processes. Microorganisms cultivation model, Bioprocess Engineering 16 (1997) 145--149.
S.S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci. 182 (2003), no. 2, 151--166.
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
S.J. Sadati, D. Baleanu, D.A. Ranjbar, R. Ghaderi and T. Abdeljawad, Mittag-Leffler, stability theorem for fractional nonlinear systems with delay, Abstr. Appl. Anal 2010 (2010), Article ID 108651, 7 pages.
H. Sheng, Y.Q. Chen and T.S. Qiu, Fractional Processes and Fractional--Order Signal Processing, Springer, New York, 2012.
H.L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, Cambridge, 1995.
N.S. Wang and G. Stephanopoulos, A new approach to bioprocess identification and modelling, Biotech. and Bioeng Symp. 14 (1984) 635--656.
H. Xu, Analytical approximations for a population growth model with fractional order, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 1978--1983.
S.B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an A + B C reaction--subdiffusion process, Phys. Rev. E 69 (2004), Article ID 036126.