On some generalized recurrent manifolds

Document Type: Research Paper

Authors

Department of Mathematics‎, ‎The University of Burdwan‎, ‎Golapbag‎, ‎Burdwan-713104‎, ‎West Bengal‎, ‎India.

Abstract

‎The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds‎, ‎called‎, ‎super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [‎A.A‎. ‎Shaikh and A‎. ‎Patra‎, On a generalized class of recurrent manifolds‎, Arch‎. ‎Math‎. ‎(Brno) 46 (2010) 71--78‎.] and weakly generalized recurrent manifolds [‎A.A‎. ‎Shaikh and I‎. ‎Roy‎, On weakly generalized recurrent manifolds‎, Ann‎. ‎Univ‎. ‎Sci‎. ‎Budapest Rolando Eotvos‎, ‎Sect‎. ‎Math. ‎54 (2011) 35--45‎.]‎. ‎The nature of associated 1-forms of a super generalized recurrent manifold is determined and it is proved that on a Roter type manifold [‎R‎. ‎Deszcz‎, On Roter type manifolds‎,‎ in‎: ‎5th Conference on Geometry and Topology of Manifolds‎, ‎Krynica‎, ‎Poland‎, ‎2003‎.] such a notion is equivalent to the notion of generalized Ricci-recurrent manifold [‎U.C‎. ‎De‎, ‎N‎. ‎Guha and D‎. ‎Kamilya‎, On generalized Ricci-recurrent manifolds‎, Tensor (N.S.) 56 (1995)‎, ‎no‎. ‎3‎, ‎312--317‎.]‎. ‎We also obtain a sufficient condition for a super generalized recurrent manifold to be a semisymmetric one and the existence of such notion is ensured by a proper example.

Keywords

Main Subjects


E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926) 214--264.

E. Cartan, Lecons sur la geometrie des espaces de Riemann, Gauthier-Villars, 2nd ed. Paris, 1946.

M.C. Chaki, On pseudosymmetric manifolds, Bull. Cl. Sci. Math. Nat. Sci. Math. 33 (1987), no. 1, 43--58.

U.C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312--317.

R. Deszcz, On Roter type manifolds, in: 5th Conference on Geometry and Topology of Manifolds, Krynica, Poland, 2003.

R. Deszcz, On some Akivis-Goldberg type metrics, Publ. Inst. Math. (Beograd) (N.S.) 74 (2003), no. 88, 71--84.

R. Deszcz and M. G logowska, Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces, Publ. Inst. Math. (Beograd) (N.S.) 72 (2002), no. 86, 81--93.

R. Deszcz, M. G logowska, M. Hotlos and K. Sawicz, A survey on generalized Einstein metric conditions, in: Proceedings of the Lorentzian Geometry Conference in Berlin,

AMS/IP Studies in Advanced Mathematics, Adv. Lorentzian Geom. 49 (2011) 27--46.

R. Deszcz, M. G logowska, M. Hotlos and G. Zandratafa, Hypersurfaces in spaces of constant curvature satisfying some curvature conditions, J. Geom. Phys. 99 (2016) 218--231.

R. Deszcz, M. G logowska, J. Je lowicki and G. Zandratafa, Curvature properties of some class of warped product manifolds, Int. J. Geom. Meth. Modern Phys. 13 (2016), Article ID 1550135, 36 pages.

R. Deszcz, M. G logowska, M. Petrovic-Torgasev, M. Prvanovic and L. Verstraelen, Cur- vature properties of some class of minimal hypersurfaces in Euclidean spaces, Filomat 29 (2015) 479--492.

R. Deszcz and D. Kowalczyk, On some class of pseudosymmetric warped products, Colloq. Math. 97 (2003), no. 1, 7--22.

R. Deszcz, M. Plaue and M. Scherfner, On Roter type warped products with 1-dimensional fibres, J. Geom. Phys. 69 (2013) 1--11.

R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10 (1979), no. 12, 1508--1513.

E. G lodek, A note on Riemannian spaces with recurrent projective curvature, Prace nauk. Inst. Mat. Fiz. teor. Politechniki Wroclaw. Ser. Studia Materialy 1 (1970) 9--12.

M. G logowska, Curvature conditions on hypersurfaces with two distinct principal curvatures, in: PDEs, Submanifolds and Affine Differential Geometry, pp. 133--143, Banach Center Publ. 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005.

M. G logowska, On quasi-Einstein Cartan type hypersurfaces, J. Geom. Physics 58 (2008), no. 5, 599--614.

D. Kowalczyk, On some subclass of semisymmetric manifolds, Soochow J. Math. 27 (2001), no. 4, 445--462.

A. Lichnerowicz, Courbure, nombres de Betti, et espaces symmetriques, Proceedings of the International Congress of Mathematicians, Cambridge, Mass. 1950, Vol 2, pp. 216--223, Amer. Math. Soc. Providence, RI, 1952.

J. Mikes, Geodesic mappings of affine-connected and Riemannian spaces (English), J. Math. Sci. 78 (1996), no. 3, 311--333.

J. Mikes, A. Vanzurova and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacky University Olomouc, Faculty of Science, Olomouc, 2009.

K. Olszak and Z. Olszak, On pseudo-Riemannian manifolds with recurrent concircular curvature tensor, Acta Math. Hungarica 137 (2012), no. 1-2, 64--71.

W. Roter, Some remarks on second order recurrent spaces, Bull. Acad. Polon. Sci., Ser. sci. math., astr. et phys. 12 (1964) 207--211.

W. Roter, A note on second order recurrent space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 12 (1964) 621--626.

H.S. Ruse, On simply harmonic spaces, J. Lond. Math. Soc. 21 (1946), no. 4, 243--247.

H.S. Ruse, On simply harmonic kappa-spaces" of four dimensions, Proc. Lond. Math. Soc. (2) 50 (1948), no. 1, 317--329.

H.S. Ruse, Three-dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc. (2) 50 (1948), no. 1, 438--446.

A.A. Shaikh, F.R. Al-Solamy and I. Roy, On the existence of a new class of semiRiemannian manifolds, Math. Sci. 7 (2013), no. 1, 13 pages.

A.A. Shaikh, R. Deszcz, M. Hotlos, J. Je lowicki and H. Kundu, On pseudosymmetric manifolds, Publ. Math. Debrecen 86 (2015), no. 3-4, 433--456.

A.A. Shaikh and H. Kundu, On equivalency of various geometric structures, J. Geom 105 (2014) 139--165

A.A. Shaikh and H. Kundu, On generlized Roter type manifolds, Arxiv:1411.0841v1 [math.DG].

A.A. Shaikh and H. Kundu, On warped product generalized Roter type manifolds, Arxiv:1411.0845 2014 [math.DG].

A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.

A.A. Shaikh and I. Roy, On quasi generalized recurrent manifolds, Math. Pannon. 21 (2010), no. 2, 251--263.

A.A. Shaikh and I. Roy, On weakly generalized recurrent manifolds, Ann. Univ. Sci. Budapest Rolando Eotvos, Sect. Math. 54 (2011) 35--45.

A.A. Shaikh, I. Roy and H. Kundu, On the existence of a generalized class of recurrent manifolds, Arxiv:1504.02534v1 [math.DG].

Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) R = 0. I. The local version, J. Diff. Geom. 17 (1982), no. 4, 531--582.

L. Tamassy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Differential Geometry and its Applications (Eger, 1989), pp. 663--670, Colloq. Math. Soc. Janos Bolyai 56, North-Holland, Amsterdam, 1992.

A.G. Walker, On Ruses spaces of recurrent curvature, Proc. Lond. Math. Soc. 52 (1950), no. 1, 36--64.