A study on dimensions of modules

Document Type: Research Paper


1 Department of Mathematics‎, ‎Yasouj University‎, ‎Yasouj‎, ‎Iran.

2 ‎Isfahan Mathematics House‎, Isfahan, ‎Iran.


‎In this article we study relations between some algebraic‎ ‎operations such as tensor product and localization from one hand‎ ‎and some well-known dimensions such as uniform dimension‎, ‎hollow‎ ‎dimension and type dimension from the other hand‎. ‎Some minor‎ ‎applications to the ring $C(X)$ are observed.


Main Subjects

S. Afrooz, O.A.S. Karamzadeh and F. Azarpanah, Goldie dimension of rings of fractions of C(X), Quaest. Math. 38 (2015), no. 1, 139--154.

M. Atiyah and I.G. Macdonald, Introduction To Commutative Algebra, Addison-Wesley, 1994.

F. Azarpanah, Essential ideals of C(X), Period. Math. Hungar. 31 (1995), no. 2, 105--112.

J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Birkhauser Verlag, Basel-Boston-Berlin, 2006.

J. Dauns, Module types, Rocky Mountain J. Math. 27 (1997), no. 2, 503--557.

J. Dauns and L. Fuchs, Infinite Goldie dimension, J. Algebra 115 (1988), no. 2, 297--302.

J. Dauns and M. Motamedi, A note on infinite Goldie dimensions, JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 165--175.

J. Dauns and Y. Zhou, Some non-classical finiteness conditions on modules, in: Algebra and Its Applications,(Athens, OH, 1999), pp. 133--159, Contemp. Math. 259, Amer. Math. Soc., Providence, RI, 2000.

J. Dauns and Y. Zhou, Classes of Modules, Chapman and Hall, 2006.

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer Verlag, 1976.

K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, CRC Press, 1976.

I. Kaplansky, Commutative Rings, University of Chicago Press, 1974.

O.A.S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), no. 1, 179--184.

O.A.S. Karamzadeh and A.R. Sajedinejad, Atomic modules, Comm. Algebra 29 (2001), no. 7, 2757--2773.

C. Lanski, Goldie conditions in finite normalizing extensions, Proc. Amer. Math. Soc. 79 (1980), no. 4, 515--519.

C. Lomp, On dual Goldie dimension, MSc Thesis, University of Glasgow, 1997, and Diplomarbeit, Heinrich-Heine Universitat Dosseldorf, 1997.

R.C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972) 251--257.

Y. Zhou, Decomposing modules into direct sums of submodules with types, J. Pure Appl. Algebra 138 (1999), no. 1, 83--97.