Inverse Sturm--Liouville problems using three spectra with finite number of transmissions and parameter dependent conditions

Document Type : Research Paper


Department of Mathematics‎, ‎Faculty of Science‎, ‎University of Maragheh‎, ‎P.O‎. ‎Box 55181-83111‎, ‎Maragheh‎, ‎Iran.


‎In this manuscript‎, ‎we study various by uniqueness results for inverse spectral problems of Sturm--Liouville operators using three spectrum with a finite number of discontinuities at interior points which we impose the usual transmission conditions‎. ‎We consider both the cases of classical Robin and eigenparameter dependent boundary conditions.


Main Subjects

S. Albeverio, F. Gesztesy, R. Hegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publishing, 2nd edition, Providence, RI, 2005.
R.Kh. Amirov, On Sturm--Liouville operators with discontinuity conditions inside an interval, J. Math. Anal. Appl. 317 (2006), no. 1, 163--176.
M.C. Drignei, Inverse Sturm--Liouville Problems Using Multiple Spectra, PhD Thesis, Iowa State University, 2008.
M.C. Drignei, Uniqueness of solutions to inverse Sturm--Liouville problems with L2(0; a) potential using three spectra, Adv. Appl. Math. 42 (2009), no. 4, 471--482.
M.C. Drignei, Constructibility of an L2 R(0; a) solution to an inverse Sturm—Liouville problem using three Dirichlet spectra, Inverse Problems 26 (2010), no. 2, 29 pp.
G. Freiling and V.A. Yurko, Inverse Sturm--Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001.
S. Fu, Z. Xua, and G. Wei, Inverse indefinite Sturm-Liouville problems with three spectra, J. Math. Anal. Appl. 381 (2011), no. 2, 506--512.
S. Fu, Z. Xu, and G. Wei, The interlacing of spectra between continuous and discontinuous Sturm--Liouville problems and its application to inverse problems, Taiwanese J. Math. 16 (2012) no. 2, 651--663.
F. Gesztesy and B. Simon, On the determination of a potential from three spectra, in: Differential Operators and Spectral Theory, pp. 85--92, Amer. Math. Soc. Transl. Ser. 2, 189, Adv. Math. Sci., 41, Amer. Math. Soc., Providence, RI, 1999.
S.G. Halvorsen, A function thoretic property of solutions of the equation x”+(λw-q)x =0, Q. J. Math. 38 (1987) 73--76.
B.M. Levitan, Inverse Sturm--Liouville Problems, VNU Science Press, 1987.
V.N. Pivovarchik, An inverse Sturm--Liouville Problem by three specta, Integral Equations Operator Theory 34 (1999), no. 2, 234--243.
V.N. Pivovarchik, A special case of the Sturm--Liouville inverse problem by three spectra: uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 1, 181--187.
M. Schmied, R. Sims and G. Teschl, On the absolutely continuous spectrum of Sturm-Liouville operators with applications to radial quantum trees, Oper. Matrices 2 (2008), no. 3, 417--434.
M. Shahriari, A.J. Akbarfam and G. Teschl, Uniqueness for inverse Sturm-Liouville problems with a finite number of transmission conditions, J. Math. Anal. Appl. 395 (2012) 19--29.
G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrodinger Operators, Grad. Stud. Math., Amer. Math. Soc. Providence, RI, 2009.
E.C. Titchmarsh, Eigenfunction Expansions Associates with Second Order Differential Equations, Oxford Univ. Press, Oxford, 1962.