Very cleanness of generalized matrices

Document Type: Research Paper


Department of Mathematics‎, ‎Bilkent University, Ankara‎, ‎Turkey.


An element $a$ in a ring $R$ is very clean in case there exists‎ ‎an idempotent $e\in R$ such that $ae = ea$ and either $a‎- ‎e$ or $a‎ + ‎e$ is invertible‎. ‎An element $a$ in a ring $R$ is very $J$-clean‎ ‎provided that there exists an idempotent $e\in R$ such that $ae =‎ ‎ea$ and either $a-e\in J(R)$ or $a‎ + ‎e\in J(R)$‎. ‎Let $R$ be a‎ ‎local ring‎, ‎and let $s\in C(R)$‎. ‎We prove that $A\in K_s(R)$ is‎ ‎very clean if and only if $A\in U(K_s(R))$‎, ‎$I\pm A\in U(K_s(R))$‎ ‎or $A\in K_s(R)$ is very J-clean‎.


Main Subjects

H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790--3804.

H. Chen, B. Ungor and S. Halicioglu, Very clean matrices over local rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), accepted.

P.A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic 47 (2008), no. 4, 258--262.

P.A. Krylov and A. A. Tuganbayev, Modules over formal rings, J.Math. Sci. (N.Y.) 171 (2010), no. 2, 248--295.

W.K. Nicholson, Strongly clean rings and fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583--3592.

M. Sheibani, H. Chen and R. Bahmani, Strongly J-clean ring over 2-projective-free rings, Arxiv:1409.3974v2 [math.RA].

G. Tang and Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra Appl. 437 (2012), no. 10, 2546--2559.