On derivations and biderivations of trivial extensions and triangular matrix rings

Document Type : Research Paper


Department of Mathematics‎, ‎University of Kurdistan‎, ‎P.O‎. ‎Box 416‎, ‎Sanandaj‎, ‎Iran.


‎Triangular matrix rings are examples of trivial extensions‎. ‎In this article we determine the structure of derivations and biderivations of the trivial extensions‎, ‎and thereby we describe the derivations and biderivations of the upper triangular matrix rings‎. ‎Some related results are also obtained‎.


Main Subjects

I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, Pure Appl. Algebra 33 (1978), no. 3, 235--242.
G.P. Barker, Automorphisms groups of algebras of triangular matrices, Linear Algebra Appl. 121 (1989) 207--215.
D. Benkoviĉ, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), no. 9, 1587--1602.
W.S. Cheung, Mappings on triangular algebras, PhD Dissertation, University of Victoria, 2000.
S.P. Coelho and C.P. Miles, Derivations of upper triangular matrix rings, Linear Algebra Appl. 187 (1993) 263--267.
H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. 39 (2013), no. 4, 635--645.
N.M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl. 432 (2013), no. 1, 250--260.
D. Hughes and J. Waschbusch, Trivial extensions of tilted algebras, Proc. Lond. Math. Soc. (3) 46 (1993), no. 2, 347--364.
S. Jøndrup, Automorphisms and derivations of upper triangular matrix rings, Linear Algebra Appl. 221 (1995) 205--218.
Y. Kitamura, On quotient rings of trivial extensions, Proc. Amer. Math. Soc. 88 (1983), no. 3, 391--396.
Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131--4151.
Y. Zhao, D. Wang and R. Yao, Biderivations of upper triangular matrix algebras over commutative rings, Int. J. Math. Game Theory Algebra 18 (2009), no. 6, 473--478.