Document Type: Research Paper

**Authors**

^{1}
School of Mathematics and Systems Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China.

^{2}
School of Mathematics and Systems Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, China.

**Abstract**

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-implicit methods. Numerical simulations are performed to show the effectiveness of the

present method that are in preference to the prior methods.

present method that are in preference to the prior methods.

**Keywords**

- Fourth-order heat equation
- alternating segment explicit-implicit method
- high accuracy
- parallel computation
- unconditional stability

**Main Subjects**

J. Chen and B.L. Zhang, A class of alternating block Crank-Nicolson method, *Int. J. Comput. Math. ***45 **(1991) 89--112.

D.J. Evans and A.R.B. Abdullah, Group explicit method for parabolic equations, *Int. J. Comput. Math. ***14 **(1983), no. 1, 73--105.

D.J. Evans and A.R.B. Abdullah, A new explicit method for the solution, *Int. J. Comput. Math. ***14 **(1983) 325--353.

G.Y. Guo and B. Liu, Unconditional stability of alternating difference schemes with intrinsic parallelism for the fourth-order parabolic equation, *Appl. Math. Comput. ***219 **(2013) 7319--7328.

R.B. Kellogg, An alternating direction method for operator equations, *J. Soc. Indust. Appl. Math. ***12 **(1964), no. 4, 848--854.

M. Lakestani and M. Dehghan, Numerical solutions of the generalized Kuramoto Sivashinsky equation using B-spline functions, *Appl. Math. Model. ***36 **(2012) 605--617.

S. Leung and S. Osher, An alternating direction explicit (ADE) scheme for time-dependent evolution equations, *Progr. Theor. Phys. ***54 **(2005), no. 3, 687--699.

F.L. Qu and W.Q. Wang, Alternating segment explicit-implicit method for nonlinear third-order KdV equation, *Appl. Math. Mech. (English Ed.) ***28 **(2007), no. 7, 973--980.

Z.Q. Shen, G.W. Yuan and X.D. Hang, Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation, *Appl. Math. Comput. ***184 **(2007) 1015--1031.

B. Soltanalizadeh and M. Zarebnia, Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using differential transformation method, *Int. J. Appl. Math. Mech. ***7 **(2011) 63--72.

R. Tavakoli and P. Davami, An alternating explicit-implicit domain decomposition method for the parallel solution of parabolic equations, *Appl. Math. Comput. ***181 **(2006) 1379--1386.

R. Tavakoli and P. Davami, 2D parallel and stable group explicit finite difference method for solution of diffusion equation, *Appl. Math. Comput. ***188 **(2007) 1184--1192.

W.Q. Wang and S.J. Fu, An unconditionally stable alternating segment difference scheme of eight points for the dispersive equation, *Int. J. Numer. Math. Eng. ***67 **(2006) 435--447.

W.Q. Wang and Q.J. Zhang, A highly accurate alternating 6-point group method for the dispersive equation, *Int. J. Comput. Math. ***87 **(2010), no. 7, 1512--1521.

T.P. Witelskia and M. Bowenb, ADI schemes for higher-order nonlinear diffusion equations, *Appl. Numer. Math. ***45 **(2003) 331--351.

G.W. Yuan, L.J. Shen and Y.L. Zhou, Unconditional stability of alternating difference scheme with intrinsic parallelism for two-dimensional parabolic systems, *Numer. Methods Partial Differential Equations ***15 **(1999) 625--636.

G.W. Yuan, Z.Q. Sheng and X.D. Hang, difference schemes with second order convergence for nonlinear parabolic system, *J. Partial Differ. Equ. ***20 **(2007), no. 1, 45--64.

B.L. Zhang, Alternating segment explicit-implicit method for the diffusion equation, *J. Numer. Methods Comput. Appl. ***12 **(1991), no. 4, 245--251.

Q.J. Zhang and W.Q. Wang, A new alternating segment explicit-implicit algorithm with high accuracy for dispersive equation, *Appl. Math. Mech. (English Ed.) ***29 **(2008), no. 9, 1221--1230

Q.J. Zhang and W.Q. Wang, A four-order alternating segment Crank-Nicolson scheme for the dispersive equation, *Comput. Math. Appl. ***57 **(2009) 283--289.

S.H. Zhu, G.W. Yuan and L.J. Shen, Alternating group explicit method for the dispersive equation, *Int. J. Comput. Math. ***75 **(2000), no. 1, 97--105.

S.H. Zhu and J. Zhao, The alternating segment explicit-implicit scheme for the dispersive equation, *Appl. Math. Lett. ***14 **(2001) 657--662.

S.H. Zhu and J. Zhao, A high-order, unconditionally stable NASEI scheme for the diffusion problem, *Appl. Math. Lett. ***14 **(2005) 657--662.

Y. Zhuang, New stable group explicit finite difference method for solution of diffusion equation, *J. Comput. Appl. Math. ***206 **(2007) 549--566.

Volume 43, Issue 6

November and December 2017

Pages 1723-1737

**Receive Date:**22 May 2015**Revise Date:**07 October 2016**Accept Date:**09 October 2016