Hölder continuity of solution maps to a parametric weak vector equilibrium problem

Document Type: Research Paper

Authors

1 Program in Mathematics‎, ‎Pibulsongkram Rajabhat University‎, ‎Phitsanulok‎, ‎Thailand.

2 Department of Mathematics,Naresuan University‎, ‎Phitsanulok‎, ‎Thailand.

Abstract

In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.

Keywords

Main Subjects


L.Q. Anh and P.Q. Khanh, On the Hölder continuity of solutions to multivalued vector equilibrium problems, J. Math. Anal. Appl. 321 (2006) 308--315.

L.Q. Anh and P.Q. Khanh, Uniqueness and Hölder continuity of solution to multivalued vector equilibrium problems in metric spaces, J. Global Optim. 37 (2007) 449--465.

L.Q. Anh and P.Q. Khanh, Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions, J. Global Optim. 42 (2008) 515--531.

L.Q. Anh, P.Q. Khanh and T.N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems, Nonlinear Anal. 75 (2012) 2293--2303.

L.Q. Anh, P.Q. Khanh and T.N. Tam, On Hölder continuity of solution maps of parametric primal and dual Ky Fan inequalities, TOP 23 (2015) 151--167.

L.Q. Anh, A.Y. Kruger and N.H. Theo, On Hölder calmness of solution mappings in Parametric equilibrium problems, TOP 22 (2014) 331--342.

Q.H. Ansari, Vector equilibrium problems and vector variational inequalities. in: F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria, pp. 1--15, Nonconvex Optim. Appl. 38, Kluwer Acad. Publ. Dordrecht, 2000

M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems, Oper. Res. Lett. 31 (2003) 445--450.

M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria, Optimization 55 (2006) 221--230.

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123--145.

B. Chen, N.J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Global Optim. 56 (2012) 1515--1528.

C.R. Chen and S.J. Li, Upper Hölder estimates of solutions to parametric primal and dual vector quasi-equilibria, J. Ind. Manag. Optim. 8 (2012) 691--703.

C.R. Chen, S.J. Li and K.L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim. 45 (2009) 309--318.

C.R. Chen, S.J. Li, J. Zeng and X.B. Li, Error analysis of approximate solutions to parametric vector quasiequilibrium problems, Optim. Lett. 5 (2011) 85--98.

G.M. Lee, D.S. Kim, B.S. Lee and N.D. Yen, Vector variational inequality as a tool for studying vector optimization problems, Nonlinear Anal. 34 (1998) 745--765.

S.J. Li, C.R. Chen, X.B. Li and K.L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems, European J. Oper. Res. 210 (2011) 148--157.

S.J. Li and X.B. Li, Hölder continuity of solutions to parametric weak generalized KyFan inequality, J. Optim. Theory Appl. 149 (2011) 540--553.

S.J. Li, X.B. Li, L.N. Wang and K.L. Teo, The Hölder continuity of solutions to generalized vector equilibrium problems, European J. Oper. Res. 199 (2009) 334--338.

X.B. Li and S.J. Li, Existences of solutions for generalized vector quasiequilibrium problems, Optim. Lett. 4 (2010) 17--28.

X.B. Li, X.J. Long and J. Zeng, Hölder continuity of the solution set of the Ky Fan inequality, J. Optim. Theory Appl. 158 (2013) 397--409.

X.J. Long, N.J. Huang and K.L.Teo, Existence and stability of solution for generalized strong vector quasi-equilibrium problem, Math. Comput. Model. 47 (2008) 445--451.

M.A. Mansour and D. Ausssel, Quasimonotone variational inequalities and quasiconvex programming: quantitative stability, Pac. J. Optim. 2 (2006) 611--626.

M.A. Mansour and H. Riahi, Sensitivity analysis for abstract equilibrium problems, J. Math. Anal. Appl. 306 (2005) 684--691.

Z.Y. Peng, X.M. Yang and J.W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky-Fan inequality, J. Optim. Theory Appl. 152 (2012), no. 1, 256--264.

Z.Y. Peng, X.M. Yang and K.L. Teo, On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan inequality, J. Ind. Manag. Optim. 11 (2015) 549--562.

Z.Y. Peng, Y. Zhao and X.M. Yang, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim. 36 (2015), no. 4, 481--500.

P. Preechasilp and R. Wangkeeree, A note on continuity of solution set for parametric weak vector equilibrium problems, Abstr. Appl. Anal. 2015 (2015), Article ID 503091, 6 pages.

R. Wangkeeree and P. Preechasilp, On the Hölder continuity of solution maps to parametric generalized vector quasi-equilibrium problems via nonlinear scalarization, J. Inequal. Appl. 2014 (2014), no. 425, 19 pages.

R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems, Appl. Math. Lett. 29 (2014) 42--45.

N.D. Yen, Hölder continuity of solutions to parametric variational inequalities, Appl. Math. Optim. 31 (1995) 245--255.


Volume 43, Issue 6
November and December 2017
Pages 1751-1767
  • Receive Date: 24 November 2015
  • Revise Date: 16 October 2016
  • Accept Date: 17 October 2016