Classifying pentavalnet symmetric graphs of order $24p$

Document Type: Research Paper

Author

School of Mathematics and Computer Sciences‎, ‎Yunnan Minzu University‎, ‎Kunming‎, ‎Yunnan 650504‎, ‎P.R‎. ‎China.

Abstract

A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.

Keywords

Main Subjects


W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997) 235--265.

C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247--256.

Y. Cheng and J. Oxley, On the weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987) 196--211.

M.D.E Conder and P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41--63.

M.D.E Conder, C.H. Li and P. Potocnik, On the orders of arc-transitive graphs J. Algebra 421 (2015) 167--186.

J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Cambridge Univ. Press, Oxford, 1985.

Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Aust. Math. Soc. 81 (2006) 153--164.

Y.Q. Feng and J.H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p2, Sci China Ser. A 49 (2006) 300--319.

Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007) 627--646.

Y.Q. Feng, J.H. Kwak and K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p2, European J. Combin. 26 (2005) 1033--1052.

M. Ghasemi and J.X. Zhou, Tetravalent s-transitive graphs of order 4p2, Graphs Combin .29 (2013) 87--97.

D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.

S.T. Guo and Y.Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math. 312 (2012) 2214--2216.

S.T. Guo, J.X. Zhou and Y.Q. Feng, Pentavalent symmetric graphs of order 12p, Electron. J. Combin. 18 (2011) P233.

X.H. Hua and Y.Q. Feng, Pentavalent symmetric graphs of order 8p, J. Beijing Jiaotong University 35 (2011) 132--135, 141.

X.H. Hua, Y.Q. Feng and J. Lee, Pentavalent symmetric graphs of order 2pq, Discrete Math. 311 (2011) 2259--2267.

G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. Ser. 2, The Clarendon Press, Oxford Univ. Press, New York, 1987.

C.H. Li, Finite s-arc transitive graphs of prime-power order, Bull. Lond. Math. Soc. 33 (2001) 129--137.

C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307--317.

C.H. Li and J.M. Pan, Finite 2-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008) 148--158.

J.J. Li, B. Ling, Symmetric graphs and interconnection networks, Future Generation Computer Systems (2017), In press.

Y.T. Li and Y.Q. Feng, Pentavalent one-regular graphs of square-free order, Algebra Colloq. 17 (2010) 515--524.

B. Ling and B.G. Lou, Classifying pentavalent symmetric graphs of order 40p, Ars Combin. 130 (2017) 163--174.

B. Ling, C.X. Wu and B.G. Lou, Pentavalent symmetric graphs of order 30p, Bull. Aust. Math. Soc. 90 (2014) 353--362.

B.D. Mckay, Transitive graphs with fewer than 20 vertices, Math. Comp. 33 (1979) 1101--1121.

J.M. Oh, A classification of cubic s-regular graph of order 14p, Discrete Math. 309 (2009) 2721--2726.

J.M. Oh, A classification of cubic s-regular graph of order 16p, Discrete Math. 309 (2009) 3150--3155.

J.M. Pan, Y. Liu, Z.H. Huang and C.L. Liu, Tetravalent edge-transitive graphs of order p2q, Sci. China Math. 57 (2014) 293--302.

J.M. Pan, B.G. Lou and C.F. Liu, Arc-transitive pentavalent graphs of order 4pq, Electron. J. Combin. 20 (2013), no. 1, Paper 36, 9 pages.

C.E. Praeger, R.J. Wang and M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993) 299--318.

C.E. Praeger and M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993) 245--266.

I. Schur, Untersuchungen uber die Darstellung der enlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907) 85--137.

W.T. Tutte, A family of cubical graphs, Math. Proc. Cambridge Philos. Soc. 43 (1947) 459--474.

W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621--624.

R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993) 197--216.

C.X. Wu, Q.Y. Yang and J.M. Pan, Arc-transitive pentavalent graphs of order eighteen times a prime, Acta Math. Appl. Sin. in press.

J.X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009) 6081-- 6086.

J.X. Zhou and Y.Q. Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009) 457--471.

J.X. Zhou and Y.Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010) 277--288.

J.X. Zhou and Y.Q. Feng, On symmetric graphs of valency ve, Discrete Math. 310 (2010) 1725--1732.


Volume 43, Issue 6
November and December 2017
Pages 1855-1866
  • Receive Date: 11 June 2015
  • Revise Date: 30 October 2016
  • Accept Date: 30 October 2016