Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces

Document Type : Research Paper


1 Department of Pure Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran.

2 Department of Mathematics‎, ‎University of Science and Technology of Mazandaran‎, ‎P.O‎. ‎Box 48518-78195‎, ‎Behshahr‎, ‎Iran.


‎The proximal point algorithm‎, ‎which is a well-known tool for finding‎ ‎minima of convex functions‎, ‎is generalized from the classical‎ ‎Hilbert space framework into a nonlinear setting‎, ‎namely‎, ‎geodesic‎ ‎metric spaces of nonpositive curvature‎. ‎In this paper we propose an‎  ‎iterative algorithm for finding the common element of the‎ ‎minimizers of a finite family of convex functions and the common ‎fixed points of a finite family of quasi-nonexpansive multivalued‎ ‎mappings in Hadamard‎ ‎spaces.


Main Subjects

A. Abkar and M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal. 74 (2011), no. 5, 1835--1840.
A. Abkar and M. Eslamian, Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces, Nonlinear Anal. 74 (2012), no. 4, 1895--1903.
D. Ariza-Ruiz, L. Leustean and G. Lopez, Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4299--4322.
M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter, Berlin, 2014.
O.A. Boikanyo and G. Morosanu, A proximal point algorithm converging strongly for general errors, Optim. Lett. 4 (2010), no. 4, 635--641.
M. Bridson and A. Haeiger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.
F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), no. 3, 201--225.
R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific. J. Math 47 (1973), no. 2, 341--355.
P. Cholamjiak1, A.A. Abdou and Y.J. Cho, Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 10 (2015), no. 1, 1--13.
S. Dhompongsa, W.A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007), no. 1, 35--45.
S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762--772.
S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572--2579.
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1983.
O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403--419.
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), no. 6, 957--961.
J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659--673.
S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), no. 2, 226--240.
W.A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), pp. 195--225, Colecc. Abierta 64, Univ. Sevilla Secr. Publ., Seville, 2003.
W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689--3696.
B. Martinet, Regularisation de inequations variationnelles par approximations successives, Rev. Franficaise Informat. Recherche Operationnelle 4 (1970), no. 3, 154--158.
R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), no. 5, 877--898.
N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multivalued maps in Banach spaces, Nonlinear Anal. 71 (2009), no. 3, 838--844.