1
Afyon Kocatepe University Faculty of Science and Arts ANS Campus
2
Afyon Kocatepe University Faculty of Science and Arts
Abstract
In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.
Demirel, O., Soyturk Seyrantepe, E., Sonmez, N. (2012). Metric and periodic lines in the Poincare ball model of hyperbolic geometry. Bulletin of the Iranian Mathematical Society, 38(3), 805-815.
MLA
Oğuzhan Demirel; Emine Soyturk Seyrantepe; N. Sonmez. "Metric and periodic lines in the Poincare ball model of hyperbolic geometry". Bulletin of the Iranian Mathematical Society, 38, 3, 2012, 805-815.
HARVARD
Demirel, O., Soyturk Seyrantepe, E., Sonmez, N. (2012). 'Metric and periodic lines in the Poincare ball model of hyperbolic geometry', Bulletin of the Iranian Mathematical Society, 38(3), pp. 805-815.
VANCOUVER
Demirel, O., Soyturk Seyrantepe, E., Sonmez, N. Metric and periodic lines in the Poincare ball model of hyperbolic geometry. Bulletin of the Iranian Mathematical Society, 2012; 38(3): 805-815.