The finite $S$-􀀀determinacy of singularities in positive characteristic $S=R_G,R_A‎, ‎K_G,K_A$

Document Type : Research Paper

Authors

1 School of Mathematics and Statistics,Wuhan University, Wuhan, assistance professor

2 School of Mathematics and Statistics‎, ‎Wuhan University‎, ‎P.O‎. ‎Box 430072‎, ‎Wuhan‎, ‎People's Republic of China

Abstract

‎For singularities $fin K[[x_{1},ldots,x_{n}]]$ over an algebraically closed field $K$ of arbitrary characteristic‎, ‎we introduce the finite $\mathcal{S}-$determinacy under $\mathcal{S}-$equivalence‎, ‎where $\mathcal{S}=\mathcal{R}_{\mathcal{G}},~\mathcal{R}_{\mathcal{A}}‎, ‎~\mathcal{K}_{\mathcal{G}},~\mathcal{K}_{\mathcal{A}}$.‎ ‎It is proved that the finite $\mathcal{R}_{\mathcal{G}}(\mathcal{K}_{\mathcal{G}})-$determinacy is equivalent to the finiteness of the relative $\mathcal{G}-$Milnor ($\mathcal{G}-$Tjurina) number and the finite $\mathcal{R}_{\mathcal{A}}(\mathcal{K}_{\mathcal{A}})-$determinacy is equivalent to the finiteness of the relative $\mathcal{A}-$Milnor ($\mathcal{A}-$Tjurina) number‎. ‎Moreover‎, ‎some estimates are provided on the degree of the $\mathcal{S}-$determinacy in positive characteristic‎.

Keywords

Main Subjects


Volume 40, Issue 6 - Serial Number 6
December 2014
Pages 1347-1372
  • Receive Date: 16 March 2012
  • Revise Date: 04 October 2013
  • Accept Date: 05 October 2013
  • First Publish Date: 01 December 2014