T-dual Rickart modules

Document Type: Research Paper


1 Department of Mathematics, University‎ ‎of Guilan‎, ‎P.O. Box 1914, Rasht‎, ‎Iran.

2 Department of‎ ‎Mathematics, University‎ ‎of Guilan‎, ‎P.O. Box 1914, Rasht‎, ‎Iran.

3 Department of Mathematics, ‎University‎ ‎of Guilan‎, ‎P.O. Box 1914, Rasht‎, ‎Iran.


We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $\overline{Z}^2(R)$ is a  direct summand of $R$ and End$(\overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is shown that, while a direct summand of a (strongly) T-dual Rickart module inherits the property, direct sums of T-dual Rickart modules do not. Moreover, when a direct sum of T-dual Rickart modules is T-dual Rickart, is included. Examples
illustrating the results are presented.


Main Subjects

T. Amouzegar, D. K. Tütüncü and Y. Talebi, t-dual Baer modules and t-lifting modules, Vietnam J. Math. 42 (2014), no. 2, 159--169.

Sh. Asgari and A. Haghany, t-extending modules and t-Baer modules, Comm. Algebra 39 (2011), no. 5, 1605--1623.

K. I. Beidar and W. F. Ke, On essential extensions of direct sums of injective modules, Arch. Math. (Basel) 78 (2002), no. 2, 120--123.

G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra 30 (2002), no. 4, 1833--1852.

G. F. Birkenmeier, B. J. Müller and S.T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summands, Comm. Algebra, 30 (2002), no. 3, 1395--1415.

J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

S. Ebrahimi Atani, M. Khoramdel and S. Dolati Pish Hesari, t-Rickart modules, Colloq. Math. 128 (2012), no. 1, 87--100.

S. Ebrahimi Atani, M. Khoramdel and S. Dolati Pish Hesari , Strongly Extending Modules, Kyungpook Math. J. 54 (2014), 237--247.

K. R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, Boston, Mass.-London, 1979.

A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J. 17 (1960) 147--158.

I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam 1968.

T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.

G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38 (2010), no. 11, 4005--4027.

G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart Modules, Comm. Algebra 39 (2011), no. 11, 4036--4058.

A. V. Mikhalev and G. Pilz. The Concise Handbook of Algebra, Kluwer Academic Publishers, Dordrecht, 2002.

S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, Cambridge, 1990.

S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra. 32 (2004), no. 1, 103--123.

S. T. Rizvi and C. S. Roman, On K-nonsingular modules and applications, Comm. Algebra 35 (2007), no. 9, 2960--2982.

Y. Talebi and N. Vanaja, The Torsion Theory Cogenerated by M-small Modules, Comm. Algebra 30 (2002), no. 3, 1449--1460.

D. K. Tütüncü, P. F. Smith and S. E. Toksoy, On dual Baer modules, Ring theory and its applications, 173--184, Contemp. Math., 609, Amer. Math. Soc., Providence, 2014.

D. K. Tütüncü and R. Tribak, On Dual Baer Modules, Glasg. Math. J. 52 (2010), no. 2, 261--269.

R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971) 233--256.

R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.