Center--like subsets in rings with derivations or epimorphisms

Document Type : Research Paper


1 Department of Mathematics‎, ‎Brock University‎, ‎St‎. ‎Catharines‎, ‎Ontario L2S 3A1‎, ‎Canada.

2 Department of Mathematics‎, ‎Al-Azhar University‎, ‎Nasr City(11884)‎, ‎Cairo‎, ‎Egypt.


We introduce center-like subsets Z*(R,f), Z**(R,f) and Z1(R,f), where R is a ring and f is a map from R to R. For f a derivation or a non-identity epimorphism and R a suitably-chosen prime or semiprime ring, we prove that these sets coincide with the center of R.


Main Subjects

H. E. Bell and M. N. Daif, On commutativity and strong commutativity--preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443--447.
H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), no. 4, 337--343.
H. E. Bell and A. A. Klein, On some centre-like subsets of rings, Math. Proc. R. Ir. Acad. 105 (2005), no. 1, 17--24.
H. E. Bell and A. A. Klein, Neumann near-rings and Neumann centers, New Zealand J. Math. 35 (2006), no. 1 , 31--36.
H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad Math. Bull. 30 (1987), no. 1, 92--101.
J. Bergen and I. N. Herstein, The algebraic hypercenter and some applications, J. Algebra 85 (1983), no. 1, 217--242.
M. Chacron, A commutativity theorem for rings, Proc. Amer. Math. Soc. 59 (1976), no. 2, 211--216.
C. L. Chuang and T. K. Lee, On the one-sided version of hypercenter theorem, Chinese J. Math. 23 (1995), no. 3, 211--223.
A. Giambruno, Some generalizations of the center of a ring, Rend. Circ. Mat. Palermo (2) 27 (1978), no. 2, 270--282.
A. Giambruno, On the symmetric hypercenter of a ring, Canad. J. Math. 36 (1984), no. 3, 421--435.
I. N. Herstein, On the hypercenter of a ring, J. Algebra 36 (1975), no. 1, 151--157.
I. N. Herstein, Rings with Involution, Univ. Chicago Press, Chicago, 1976.
I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), no. 4, 509--511.