The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

Document Type : Research Paper


Department of Mathematics‎, ‎Alzahra University‎, ‎Vanak‎, ‎Post Code 19834‎, ‎Tehran‎, ‎Iran.


‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadratic‎ ‎radial basis functions (IQ-RBFs)‎. ‎The operational matrix of‎ ‎derivative for IQ-RBFs is introduced and the new computational‎ ‎technique is used for this purpose‎. ‎The operational matrix of‎ ‎derivative is utilized to reduce the problem to a set of algebraic‎ ‎equations‎. ‎Some examples are given to demonstrate the validity and‎ ‎applicability of the new method and a comparison is made with the‎ ‎existing results.


Main Subjects

‎H‎. ‎Azari and F‎. ‎Parzlivand‎, ‎Determination of the coefficient in‎ ‎the advection diffusion equation using collocation and radial‎ ‎basis function‎, ‎Univ‎. ‎J‎. ‎Integral Equations‎ ‎2 (2014) 20--29‎.
‎E‎. ‎C‎. ‎Baran‎, ‎Numerical procedures for determining of an unknown‎ ‎parameter in parabolic equation‎, ‎Appl‎. ‎Math‎. ‎Comput‎. ‎162 (2005)‎, ‎no‎. ‎3‎, ‎1219--1226‎.
‎D‎. ‎Brown‎, ‎L‎. ‎Ling‎, ‎E‎. ‎Kansa and J‎. ‎Levesley‎, ‎On approximate‎ ‎cardinal preconditioning methods for solving PDEs with radial‎ ‎basis functions‎, ‎Eng‎. ‎Anal‎. ‎Bound‎. ‎Elem. 29‎ ‎(2005) 343--353‎.
‎M‎. ‎D‎. ‎Buhmann and C‎. ‎A‎. ‎Micchelli‎, ‎Multiquadric interpolation improved‎. ‎Advances in the theory and applications of radial basis functions‎, ‎Comput‎. ‎Math‎. ‎Appl‎. ‎24 (1992)‎, ‎no‎. ‎12‎, ‎21--25‎.
‎J‎. ‎R‎. ‎Cannon and Y‎. ‎Lin‎, ‎Determination of parameter $p(t)$ in‎ ‎H\"older classes for some semilinear parabolic equations‎, ‎Inverse Problems 4 (1988)‎, ‎no‎. ‎3‎, ‎595--606‎.
‎J‎. ‎R‎. ‎Cannon and Y‎. ‎Lin‎, ‎An inverse problem of finding a parameter‎ ‎in a semi-linear heat equation‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎145 (1990)‎, ‎no‎. ‎2‎, ‎470--484‎.
‎J‎. ‎R‎. ‎Cannon‎, ‎Y‎. ‎Lin and S‎. ‎Xu‎, ‎Numerical procedures for the‎ ‎determination of an unknown coefficient in semi-linear parabolic‎ ‎differential equations‎, ‎Inverse Problems 10 (1994)‎, ‎no‎. ‎2‎, ‎227--243‎.
‎J‎. ‎R‎. ‎Cannon‎, ‎Y‎. ‎Lin and S‎. ‎Wang‎, ‎Determination of source parameter‎ ‎in parabolic equations‎, ‎Meccanica 27 (1992) 85--94‎.
‎J‎. ‎R‎. ‎Cannon and H‎. ‎M‎. ‎Yin‎, ‎Numerical solutions of some parabolic‎ ‎inverse problems‎, ‎ Numer‎. ‎Methods Partial Differential Equations 2 (1990)‎, ‎no‎. ‎2‎, ‎177--191‎.
R‎. ‎E‎. ‎Carlson and T‎. ‎A‎. ‎Foley‎, ‎Interpolation of track data with‎ ‎radial basis methods‎, ‎Comput‎. ‎Math‎. ‎Appl‎. ‎24‎ ‎(1992)‎, ‎no‎. ‎12‎, ‎27--34‎.
‎S‎. ‎Chantrasirivan‎, ‎Cartesian grid method using radial basis‎ ‎functions for solving Poisson‎, ‎Helmholtz‎, ‎and diffusion convection‎ ‎equations‎, ‎Eng‎. ‎Anal‎. ‎Bound‎. ‎Elem. 28 (2004)‎ ‎1417--1425‎.
W‎. ‎Chen and M‎. ‎Tanaka‎, ‎A meshless‎, ‎integration-free and boundary‎ ‎only RBF technique‎, ‎Comput‎. ‎Math‎. ‎Appl‎. ‎4 (2002)‎, ‎no‎. ‎3-5‎, ‎379--391‎.
‎C‎. ‎K‎. ‎Chiu‎, ‎J‎. ‎Stoeckler and J‎. ‎D‎. ‎Ward‎, ‎Analytic wavelets generated‎ ‎by radial functions‎, ‎Adv‎. ‎Comput‎. ‎Math‎. ‎5 (1996)‎, ‎no‎. ‎1‎, ‎95--123‎.
‎F‎. ‎Davoodi‎, ‎A‎. ‎Abbas Nejad‎, ‎A‎. ‎Shahrezaee and M‎. ‎J‎. ‎Maghrebi‎, ‎Control parameter estimation in a semi-linear parabolic inverse‎ ‎problem using a high accurate method‎, ‎ Appl‎. ‎Math‎. ‎Comput. 218 (2011)‎, ‎no‎. ‎5‎, ‎1798--1804‎.
M‎. ‎Dehghan‎, ‎Numerical solution of one-dimensional parabolic‎ ‎inverse problem‎, ‎Appl‎. ‎Math‎. ‎Comput.‎ ‎136 (2003)‎, ‎no‎. ‎2-3‎, ‎333--344‎.
‎M‎. ‎Dehghan‎, ‎Determination of a control parameter in the‎ ‎two-dimensional diffusion equation‎, ‎Appl‎. ‎Numer‎. ‎Math‎. ‎37 (2001)‎, ‎no‎. ‎4‎, ‎489--502‎.
‎M‎. ‎Dehghan‎, ‎An inverse problem of finding a source parameter in a‎ ‎semilinear parabolic equation‎, ‎Appl‎. ‎Math‎. ‎Model.‎ ‎25 (2001) 743--754‎.
‎M‎. ‎Dehghan‎, ‎Determination of a control function in‎ ‎three-dimensional parabolic equations‎, ‎Math‎. ‎Comput‎. ‎Simulation 61 (2003)‎, ‎no‎. ‎2‎, ‎89--100‎.
‎M‎. ‎Dehghan‎, ‎Finding a control parameter in one-dimensional‎ ‎parabolic equation‎, ‎Appl‎. ‎Math‎. ‎Comput.‎ ‎135 (2003)‎, ‎no‎. ‎2-3‎, ‎491--503‎.
‎M‎. ‎Dehghan and A‎. ‎Shokri‎, ‎A meshless method for numerical solution‎ ‎of the one-dimensional wave equation with an integral condition‎ ‎using radial basis functions‎, ‎Numer‎. ‎Algorithms 52‎ ‎(2009)‎, ‎no‎. ‎3‎, ‎461--477‎.
‎A‎. ‎Fatullayev and E‎. ‎Can‎, ‎Numerical procedures for determining‎ ‎unknown source parameter in parabolic equations‎, ‎Math‎. ‎Comput‎. ‎Simulation 54 (2000)‎, ‎no‎. ‎1-3‎, ‎159--167‎.
‎R‎. ‎Franke‎, ‎A Critical Comparison of Some Methods for‎ ‎Interpolation of Scattered Data‎, ‎PhD thesis‎, ‎Naval Postgraduate‎ ‎School Monterey‎, ‎California‎, ‎1979‎.
‎R‎. ‎L‎. ‎Hardy‎, ‎Multiquadratic equation of topography and other‎ ‎irregular surfaces‎, ‎J‎. ‎Geophys‎. ‎Res‎. ‎76 (1971)‎ ‎1905--1915‎.
‎‎R‎. ‎L‎. ‎Hardy‎, ‎Theory and applications of the multiquadric biharmonic‎ ‎method‎: ‎20 years of discovery‎, ‎Comput‎. ‎Math‎. ‎Appl‎. ‎19 (1990)‎, ‎no‎. ‎8-9‎, ‎163--208‎.
‎S‎. ‎U‎. ‎Islam‎, ‎S‎. ‎Haqb and A‎. ‎Ali‎, ‎A meshfree method for the‎ ‎numerical solution of the RLW equation‎, ‎J‎. ‎Comput‎. ‎Appl‎. ‎Math‎. ‎223 (2009)‎, ‎no‎. ‎2‎, ‎997--1012‎.
‎E‎. ‎Kansa and Y‎. ‎C‎. ‎Hon‎, ‎Circumventing the ill-conditioning problem‎ ‎with multiquadric radial basis functions‎: ‎applications to elliptic‎ ‎partial differential equations‎, ‎Comput‎. ‎Math‎. ‎Appl‎. ‎39 (2000)‎, ‎no‎. ‎7-8‎, ‎123--137‎.
‎A‎. ‎J‎. ‎Khattak‎, ‎S‎. ‎I‎. ‎A‎. ‎Tirmizi and S‎. ‎U‎. ‎Islam‎, ‎Application of meshfree collocation method to a class of nonlinear partial differential equations‎, ‎Eng‎. ‎Anal‎. ‎Bound‎. ‎Elem‎. ‎33‎ ‎(2009)‎, ‎no‎. ‎5‎, ‎661--667‎.
‎E‎. ‎Kreyszig‎, ‎Introductory Functional Analysis with‎ ‎Applications‎, ‎John Wiley \& Sons Press‎, ‎New York‎, ‎1978‎.
‎J‎. ‎Li‎, ‎Application of radial basis meshless methods to direct and‎ ‎inverse biharmonic boundary value problems‎, ‎Commun‎. ‎Numer‎. ‎Methods Eng‎. ‎21 (2005)‎, ‎no‎. ‎4‎, ‎169--182‎.
‎S‎. ‎Liu and R‎. ‎Triggiani‎, ‎Global uniqueness and stability in‎ ‎determining the damping and potential coefficients of an inverse‎ ‎hyperbolic problem‎, ‎Nonlinear Anal‎. ‎Real World Appl‎. ‎12 (2011)‎, ‎no‎. ‎3‎,  ‎1562--1590‎.
‎N‎. ‎Mai-Duy and T‎. ‎Tran-Cong‎, ‎Numerical solution of differential‎ ‎equations using multiquadric radial basis function networks‎, ‎Neural Netw‎. ‎14 (2001) 185--199‎.
‎J‎. ‎A‎. ‎MacBain and J‎. ‎B‎. ‎Bednar‎, ‎Existence and uniqueness properties for the one-dimensional magnetotellurics inversion problem‎, ‎J‎. ‎Math‎. ‎Phys‎. ‎27 (1986)‎, ‎no‎. ‎2‎, ‎645--649‎.
‎K‎. ‎Parand‎, ‎S‎. ‎Abbasbandy‎, ‎S‎. ‎Kazem and J‎. ‎A‎. ‎Rad‎, ‎A novel‎ ‎application of radial basis functions for solving a model of‎ ‎first-order integro-ordinary differential equation‎, ‎Commun‎. ‎Nonlinear Sci‎. ‎Numer‎. ‎Simul‎. ‎16 (2011)‎, ‎no‎. ‎11‎, ‎4250--4258‎.
‎F‎. ‎Parzlivand and A‎. ‎M‎. ‎Shahrezaee‎, ‎Numerical solution of an inverse‎ ‎reaction diffusion problem via collocation method based on radial‎ ‎basis functions‎, ‎Appl‎. ‎Math‎. ‎Model. 39‎ ‎(2015)‎, ‎no‎. ‎13‎, ‎3733--3744‎.
‎F‎. ‎Parzlivand‎, ‎A‎. ‎M‎. ‎Shahrezaee‎, ‎Gaussian radial basis functions‎ ‎for the solution of an inverse problem of mixed‎ ‎parabolic-hyperbolic type‎, ‎Eur‎. ‎J‎. ‎Pure Appl‎. ‎Math. 8 (2015)‎, ‎no‎. ‎2‎, ‎239--254‎.
‎A‎. ‎I‎. ‎Prilepko and V‎. ‎V‎. ‎Soloev‎, ‎Solvability of the inverse boundary‎ ‎value problem of finding a coefficient of a lower order term in a‎ ‎parabolic equation‎, ‎J‎. ‎Differential Equ. 23‎ ‎(1987) 136--143‎.
‎H‎. ‎Power‎, ‎M‎. ‎Zerroukat and C‎. ‎Chen‎, ‎A numerical method for heat‎ ‎transfer problems using collocation and radial basis functions‎, ‎Internat‎. ‎J‎. ‎Numer‎. ‎Methods Engrg‎. ‎42 (1998) 1263--1278‎.
‎A‎. ‎G‎. ‎Ramm‎, ‎An inverse problem for the heat equation‎, ‎Proc‎. ‎Roy‎. ‎Soc‎. ‎Edinburgh Sect‎. ‎123 (1993)‎, ‎no‎. ‎6‎, ‎973--976‎.
‎A‎. ‎G‎. ‎Ramm‎, ‎Mathematical and Analytical Techniques with‎ ‎Application to Engineering‎, ‎Springer‎, ‎NewYork‎, ‎2005‎.
‎S‎. ‎Rippa‎, ‎An algorithm for selecting a good value for the‎ ‎parameter $c$ in radial basis function interpolation‎, ‎Adv‎. ‎Comput‎. ‎Math‎. ‎11 (1999)‎, ‎no‎. ‎2-3‎, ‎193--210‎.
‎S‎. ‎A‎. ‎Sarra‎, ‎Adaptive radial basis function method for time‎ ‎dependent partial differential equations‎, ‎Appl‎. ‎Numer‎. ‎Math‎. ‎54 (2005)‎, ‎no‎. ‎1‎, ‎79--94‎.
‎C‎. ‎Shu‎, ‎H‎. ‎Ding‎, ‎and K‎. ‎S‎. ‎Yeo‎, ‎Solution of partial differential‎ ‎equations by a global radial basis function-based differential‎ ‎quadrature method‎, ‎Eng‎. ‎Anal‎. ‎Bound‎. ‎Elem. 28‎ ‎(2004) 1217--1226‎.
‎W‎. ‎Wang‎, ‎B‎. ‎Han and M‎. ‎Yamamoto‎, ‎Inverse heat problem of‎ ‎determining time-dependent source parameter in reproducing kernel‎ ‎space‎, ‎Nonlinear Anal‎. ‎Real World Appl.‎ ‎14 (2013)‎, ‎no‎. ‎1‎, ‎875--887‎.
‎S‎. ‎Wang and Y‎. ‎Lin‎, ‎A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation‎, Inverse Problems 5 (1989)‎, ‎no‎. ‎4‎, ‎631--640‎.