Soleimani, B., Tammer, C. (2016). Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures. Bulletin of the Iranian Mathematical Society, 42(Issue 7 (Special Issue)), 5-23.

B. Soleimani; C. Tammer. "Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures". Bulletin of the Iranian Mathematical Society, 42, Issue 7 (Special Issue), 2016, 5-23.

Soleimani, B., Tammer, C. (2016). 'Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures', Bulletin of the Iranian Mathematical Society, 42(Issue 7 (Special Issue)), pp. 5-23.

Soleimani, B., Tammer, C. Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures. Bulletin of the Iranian Mathematical Society, 2016; 42(Issue 7 (Special Issue)): 5-23.

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

Receive Date: 08 March 2016,
Revise Date: 29 June 2016,
Accept Date: 14 December 2016

Abstract

We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimization problems with variable ordering structures applying nonlinear separating functionals and Ekeland's variational principle.

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 2009.

T. Q. Bao, G. Eichfelder, B. Soleimani and Chr. Tammer, Ekelenad's variational principle for vector optimization problems with variable ordering structures, J. Convex Anal. to appear.

T. Q. Bao and B. S. Mordukhovich, Necessary nondomination conditions in sets and vector optimization with variable ordering structures, J. Optim. Theory Appl. 162 (2014), no. 2, 350--370.

T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers for multiobjective problems: existence and optimality conditions, Math. Program. 122 (2010), no. 2, 301--347.

G. Y. Chen, X. Huang and X. Yang, Vector optimization, Set-valued and Variational Analysis, Lecture Notes in Econom. and Math. Systems, 541, Springer-Verlag, Berlin, 2005.

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl. 112 (2002), no. 1, 97--110.

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. Global Optim. 32 (2005), no. 4, 451--466.

S. Dolecki and C. Malivert, General duality in vector optimization, Optimization 27 (1993), no. 1-2, 97--119.

M. Durea and C. Tammer, Fuzzy necessary optimality conditions for vector optimization problems, Optimization 58 (2009), no. 4, 449--467.

G. Eichfelder, Optimal elements in vector optimization with a variable ordering structure, J. Optim. Theory Appl. 151 (2011), no. 2, 217--240.

G. Eichfelder, Variable ordering structures in vector optimization, in: Q. H. Ansari, J. C. Yao (eds.), Recent Developments in Vector Optimization, pp. 95--126, Springer, Heidelberg, 2012.

G. Eichfelder, Variable Ordering Structures in Vector Optimization, Springer, Heidelberg, 2014.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324--353.

C. Gerth (Tammer) and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67 (1990), no. 2, 297--320.

A. Gopfert, H. Riahi, C. Tammer and C. Zalinescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.

A. Gopfert, T. Riedrich and C. Tammer, Angewandte Funktionalanalysis, Vieweg Teubner, Wiesbaden, 2009.

N. J. Huang, X. Q. Yang and W. K. Chan, Vector complementarity problems with a variable ordering, European J. Oper. Res. 176 (2007), no. 1, 15--26.

A. D. Ioffe, Metric regularity and subdifferential calculus, Russian Math. Surveys 55 (2000), no. 3, 501--558.

J. Jahn, Vector Optimization, Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.

P. Loridan, "-solutions in vector minimization problem, J. Optim. Theory Appl. 43 (1984), no. 2, 265--276

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Basic theory, Springer-Verlag, Berlin, 2006.

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation II, Applications, Springer-Verlag, Berlin, 2006.

B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in asplund spaces, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1235--1280.

A. Pascoletti and P. Serani, Scalarizing vector optimization problems, J. Optim. Theory Appl. 42 (1984), no. 4, 499--524.

R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer-Verlag, 2nd edition, Berlin,1993.

B. Soleimani, Characterization of approximate solutions of vector optimization problems with a variable order structure, J. Optim. Theory Appl. 162 (2014), no. 2, 605--632.

B. Soleimani and C. Tammer, Concepts for approximate solutions of vector optimization problems with variable order structure, Vietnam J. Math. 42 (2014), no. 4, 543--566.

B . Soleimani and C. Tammer, Ekeland's variational principle and its equivalent theorem in vector optimization with respect to variable ordering structures, in prepation.

P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl. 14 (1974) 319--377.