Yaghoobi, M., H. Dehmiry, A. (2016). Solving multiobjective linear programming problems using ball center of polytopes. Bulletin of the Iranian Mathematical Society, 42(Issue 7 (Special Issue)), 67-88.

M. A. Yaghoobi; A. H. Dehmiry. "Solving multiobjective linear programming problems using ball center of polytopes". Bulletin of the Iranian Mathematical Society, 42, Issue 7 (Special Issue), 2016, 67-88.

Yaghoobi, M., H. Dehmiry, A. (2016). 'Solving multiobjective linear programming problems using ball center of polytopes', Bulletin of the Iranian Mathematical Society, 42(Issue 7 (Special Issue)), pp. 67-88.

Yaghoobi, M., H. Dehmiry, A. Solving multiobjective linear programming problems using ball center of polytopes. Bulletin of the Iranian Mathematical Society, 2016; 42(Issue 7 (Special Issue)): 67-88.

Solving multiobjective linear programming problems using ball center of polytopes

^{}Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

Receive Date: 08 March 2016,
Revise Date: 29 June 2016,
Accept Date: 14 December 2016

Abstract

Here, we aim to develop a new algorithm for solving a multiobjective linear programming problem. The algorithm is to obtain a solution which approximately meets the decision maker's preferences. It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution. Numerical examples and a simulation study are used to illustrate the performance of the proposed algorithm.

A. Abel and P. Korhonen, Using aspiration levels in an interactive interior multiobjective linear programming algorithm, European J. Oper. Res. 89 (1996), no. 1, 193--201.

B. Aghezzaf and T. Ouaderhman, An interactive interior point algorithm for multiobjective linear programming problems, Oper. Res. Lett. 29 (2001), no. 4, 163--170.

A. Arbel, An interior multiobjective linear programming algorithm, Comput. Oper. Res. 20 (1993), no. 7, 723--735.

A. Arbel and L. G. Vargas, Euclidean centers: computation, properties and a MOLP application, Math. Comput. Model. 48 (2008), no. 1-2, 197--205.

P. Armand, Finding all maximal efficient faces in multiobjective linear programming, Math. Program. 61 (1993), no. 3, 357--375.

P. Armand and C. Malivert, Determination of the efficient set in multiobjective linear programming, J. Optim. Theory Appl. 70 (1991), no. 3, 467--489.

D. S. Atkinson and P. M. Vaidya, A scaling technique for finding the weighted analytic center of a polytope, Math. Program. 57 (1992), no. 2, 163--192.

R. Benayoun, J. D. Montgolfier, J. Tergny and O. Laritchev, Linear programming with multiple objective functions: Step method (STEM), Math. Program. 1 (1971), no. 1, 366--375.

P. T. Boggs, P. D. Domich, J. R. Donaldson and C. Witzgall, Algorithmic enhancements to the method of centers for linear programming problems, INFORMS J. Comput. 1 (1989), no. 3, 159--171.

R. Caballero, M. Luque, J. Molina and F. Ruiz, MOPEN: A computational package for linear multiobjective and goal programming problems, Decis. Support Syst. 41 (2005) 160--175.

A. Cambini and L. Martein, Generalized Convexity and Optimization, Lecture Notes in Econom. and Math. Systems, 616, Springer-Verlag, Berlin, 2009.

H. K. Chen and H. W. Chou, Solving multiobjective linear programming problems- a generic approach, Fuzzy Sets and Systems 82 (1996), no. 1, 35--38.

J. G. Ecker, N. S. Hegner and I. A. Kouada, Generating all maximal efficient faces for multiple objective linear programs, J. Optim. Theory Appl. 30 (1980), no. 3, 353--381.

M. Ehrgott, Multicriteria Optimization, Springer-Verlag, Berlin, 2005.

M. Ehrgott and S. Ruzika, Improved constraint method for multiobjective programming, J. Optim. Theory Appl. 138 (2008), no. 3, 375--396.

J. T. Fagan and J. E. Falk, A method of Euclidean centers, Comput. Oper. Res. 23 (1996), no. 1, 13--25.

S. I. Gass and P. G. Roy, The compromise hypersphere for multiobjective linear programming, European J. Oper. Res. 144 (2003), no. 3, 459--479.

P. Huard, Resolution of mathematical programming with nonlinear constraints by the method of centers, in: J. Abadie (ed.), Nonlinear Programming, pp. 207--219, NorthHolland, Amsterdam, 1964.

P. G. Ipsilandis, Multiobjective linear programming model for scheduling linear repetitive projects, J. Constr. Eng. Manage. 133 (2007), no. 6, 417--424.

H. Isermann, The enumeration of the set of all efficient solutions for a linear multiple objective program, Oper. Res. Q. 28 (1977), no. 1, 711-725.

D. F. Jones and M. Tamiz, Practical Goal Programming, Springer, Berlin, 2010.

M. Luque, K. Miettinen, A. B. Ruiz and F. Ruiz, A two-slope achievement scalarizing function for interactive multiobjective optimization, Comput. Oper. Res. 39 (2012), no. 7, 1673--1681.

B. Metev and I. Yourdanov, Use of reference points for MOLP problems analysis, European J. Oper. Res. 68 (1993), no. 3, 374--378.

K. G. Murty, New Sphere Methods for LP, Tutorials in OR, INFORMS J. Comput. 2 (2009), no. 1, 62--80.

K. G. Murty and M. R. Oskoorouchi, Note on implementing the new sphere method for LP using matrix inversions sparingly, Optim. Lett. 3 (2009), no. 1, 137--160.

K. G. Murty and M. R. Oskoorouchi, Sphere Methods for LP, Algorithmic Oper. Res. 5 (2010), no. 1, 21--33.

L. Pourkarimi, M. A. Yaghoobi and M. Mashinchi, Determining maximal efficient faces in multiobjective linear programming problem, J. Math. Anal. Appl. 354 (2009), no. 1, 234--248.

F. Ruiz, M. Luque and J. Caballero, A classi_cation of the weighting schemes in reference point procedures for multiobjective programming, J. Oper. Res. Soc. 60 (2008), no. 4, 544--553.

L. Shao and M. Ehrgott, Approximating the nondominated set of an MOLP by approximately solving its dual problem, Math. Methods Oper. Res. 68 (2008), no. 2, 257--276.

G. Sonnevend, An analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, in: A. Prekopa, J. Szelezsaan and B. Strazicky (eds.), System Modelling and Optimization, pp. 866--875, Lect. Notes Cont. Inf. Sci. 84, Springer, 1986.

R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Robert E. Krieger Publishing, Malabar, 1989.

E. Tarek, Method of centers algorithm for multi-objective programming problems, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 5, 1128--1142.

T. B. Trafalis and R. M. Alkahtani, An interactive analytic center trade-off cutting plane algorithm for multiobjective linear programming, Comput. Ind. Eng. 37 (1999), no. 3, 649--669.

H. M. Winkels and M. Meika, An integration of efficiency projections into the Geoffrion approach for multiobjective linear programming, European J. Oper. Res. 16 (1984), no. 1, 113--127.

W. Xiao, Z. Liu, M. Jiang and Y. Shi, Multiobjective linear programming model on injection oil_eld recovery system, Comput. Math. Appl. 36 (1998), no. 5, 127--135.

P. L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicriteria simplex method, J. Math. Anal. Appl. 49 (1975), no. 2, 430--468.

M. Zeleny, Linear Multiobjective Programming, Lecture Notes in Econom. and Math. Systems, 95, Springer-Verlag, Berlin-New York, 1974.

C. Zopounidis, D. K. Despotis and I. Kamaratou, Portfolio selection using the ADELAIS multiobjective linear programming system, Comput. Econ. 11 (1998), no. 3, 189--204.