Quasilinear Schrödinger equations involving critical exponents in $\mathbb{\textbf{R}}^2$

Document Type : Research Paper


1 Department of Mathematics and Computer Science‎, ‎Guizhou‎ ‎Normal University‎, ‎Guiyang‎, ‎Guizhou‎, ‎550001‎, ‎P‎. ‎R‎. ‎of China.

2 School of Mathematics‎, ‎South China University of Technology‎, ‎Guangzhou‎, ‎Guangdong 510640‎, ‎P‎. ‎R‎. ‎of China.


‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $\mathbb{\textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.


Main Subjects

A. de Bouard, N. Hayashi and J. C. Saut. Global existence of small solutions to a relativistic nonlinear Schrodinger equation, Comm. Math. Phys. 189 (1997) 73--105.
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2, Commun. Part. Diff. Eq. 17 (1992) 407--435.
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrodinger equations: A dual approach, Nonlinear Anal. 56 (2004) 213--226.
A. Floer and A. Weisntein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986) 397--408.
B. Hartmann and W. Zakzewski, Electrons on hexagonal lattices and applications to nanotubes, Phys. Rev. 68 (2003) 1-9.
R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrodinger equations, Z. Physik B 37 (1980) 83--87.
L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN, Proc. Amer. Math. Soc. 131 (2003) 2399--2408.
A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons, Phys. Rep. 194 (1990) 117--238.
S. Kurhura, Large-amplitude quasi-solitons in superuid films, J. Phys. Soc. Jpn. 50 (1981) 3262--3267.
E. W. Laedke, K. H. Spatschek and L. Steno, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys. 24 (1983) 2764--2769.
P. L. Lions, The concentration compactness principle in the calculus of variations, The locally compact case. Part I and II, Ann. Inst. H. Poincare Anal. Non. Lineaire 1 (1984), no. 4, 223--283.
A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett. 27 (1978) 517--520.
J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrodinger equations II, J. Differential Equations 187 (2003) 473--493.
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971) 1077--1092.
J. M. do  O, N-Laplacian equations in RN with critical growth, Abstr. Appl. Anal. 2 (1997) 301--315.
J. M. do  O, O. Miyagaki, H. Olimpio and S. Soares, Soliton solutions for quasilinear Schrodinger equations with critical growth, J. Differential Equations 248 (2010), no. 4, 722--744.
J. M. do  O, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrodinger equations: the critical exponential case, Nonlinear Anal. 67 (2007), no. 12, 3357--3372.
M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrodinger equations, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 329--344.
G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A 110 (1982) 41--80.
M. Schechter, Linking Methods in Critical Point Theory, Birkhauser, Boston, 1999.
N. S. Trudinger, On the imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473--484.
Y. T. Shen and X. K. Guo, The positive solution of degenerate variational problems and degenerate elliptic equations, Chinese J. Contemp. Math. 14 (1993), no. 2, 157--165.
Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations, Nonlinear Anal. 80 (2013) 194--201.
Y.Wang, J. Yang and Y. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in RN, Nonlinear Anal. 71 (2009), no. 12, 6157--6169