Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

Document Type: Research Paper

Authors

1 Department of Mathematics, University of Nigeria, Nsukka, Nigeria.

2 School of Mathematics‎, ‎Statistics and Computer Science‎, ‎University of KwaZulu-Natal‎, ‎Durban‎, ‎South Africa.

3 Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA

Abstract

‎Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space‎. ‎So many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎but as widely known the computation of these algorithms may be difficult and for this reason‎, ‎some researchers have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm‎. ‎To the best of our knowledge most of the works in literature that do not involve the calculation or estimation of the operator norm only obtained weak convergence results‎. ‎In this paper, by appropriately modifying the simultaneous iterative algorithm introduced by Zhao‎, ‎we state and prove a strong convergence result for solving split equality problem‎. ‎We present some applications of our result and then give some numerical example to study its efficiency and implementation at the end of the paper‎.

Keywords

Main Subjects


E‎. ‎Al-Shemas and A‎. ‎Moudafi‎, ‎Simultaneous iterative methods for split equality problems and‎ ‎application‎, ‎ Trans‎. ‎Math‎. ‎Program‎. ‎Appl. 1 (2013) 1--11‎.

H‎. ‎Attouch‎, ‎J‎. ‎Bolte‎, ‎P‎. ‎Redont and A‎. ‎Soubeyran‎, ‎Alternating proximal algorithms for weakly coupled minimization problems‎, ‎applications to dynamical games and PDEs‎, ‎ J‎. ‎Convex Anal. 15 (2008) 485--506‎.

T‎. ‎Bortfeld‎, ‎Y‎. ‎Censor‎, ‎B‎. ‎Martin and A‎. ‎Trofimov‎, ‎A unified approach for inversion problems in intensity-modulated radiation therapy‎, ‎ Phys‎. ‎Med‎. ‎Biol. 51 (2006) 2353--2365‎.

C‎. ‎Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction‎. ‎ Inverse Problems 20 (2004) 103--120‎.

C‎. ‎Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem it Inverse Problems 18 (2002) 441--453‎.

C‎. ‎Byrne and A‎. ‎Moudafi‎, ‎Extensions of the CQ Algorithms for the split feasibility and split equality Problems‎, ‎ J‎. ‎Nonlinear Convex Anal. to appear‎.

Y‎. ‎Censor‎, ‎A‎. ‎Gibali and S‎. ‎Reich‎, ‎Algorithms for the split variational inequality problem‎, ‎ Numer‎. ‎Algorithms 59 (2012) 301--323‎.

‎Y‎. ‎Censor and A‎. ‎Segal‎, ‎The split common fixed point problem for directed operators‎, ‎ J‎. ‎Convex Anal. 16 (2009) 587--600‎.

‎A.S‎. ‎Chang‎, ‎J.J‎. ‎Kim‎, ‎L‎. ‎Yang and J.Ch‎. ‎Yao‎, ‎Iterative approximation to convex feasibility problems in Banach space‎, ‎ Fixed Point Theory Appl. 2007 (2007)‎, ‎Aricle ID 46797‎, ‎19 pages‎.

‎R‎. ‎Chen‎, ‎Y.C‎. ‎Liou‎, ‎G‎. ‎Marino and Y‎. ‎Yao‎, ‎Applications of fixed point and optimization methods to the multiple-sets split feasibility problem‎, ‎ J‎. ‎Appl‎. ‎Math. 2012 (2012)‎, ‎Article ID 927530‎, ‎21 pages‎.

‎P‎. ‎Cholamjiak and Y‎. ‎Shehu‎, ‎Another look at the split common fixed point problem for demicontractive operators‎, ‎ Rev‎. ‎R‎. ‎Acad‎. ‎Cienc‎. ‎Exactas Fis‎. ‎Nat‎. ‎Ser‎. ‎A Math‎. ‎RACSAM‎, ‎ 110 (2016)‎, ‎no.~1‎, ‎201--218‎.

‎J‎. ‎Deepho and P‎. ‎Kumam‎, ‎A Modified Halperns Iterative Scheme for Solving Split Feasibility Problems‎, ‎ Abstr‎. ‎Appl‎. ‎Anal. 2012 (2012)‎, ‎Article ID 876069‎, ‎8 pages‎.

J‎. ‎Deepho and P‎. ‎Kumam‎, ‎Mann's type extragradient for solving split feasibility and fixed point problems of Lipschitz asymptotically quasi-nonexpansive mappings‎, ‎ Fixed Point Theory Appl. 2013 (2013)‎, ‎no 349‎, ‎19 pages‎.

J‎. ‎Deepho and P‎. ‎Kumam‎, ‎Split feasibility and fixed-point problems for asymptotically quasi-nonexpansive mappings‎, ‎ J‎. ‎Inequal‎. ‎Appl. 2013 (2013)‎, ‎no‎. ‎322‎, ‎16 pages‎.

Q.L‎. ‎Dong‎, ‎S‎. ‎He and J‎. ‎Zhao‎, ‎Solving the convex feasibility problem without prior knowledge of operator norms‎, ‎ Optimization 64 (2015)‎, ‎1887--1906‎.

‎G‎. ‎Lopez‎, ‎V‎. ‎Martin-Marquez‎, ‎F‎. ‎Wang and H.K‎. ‎Xu‎, ‎Solving the split feasibility problem withou prior knowledge of matrix norms‎, ‎ Inverse Problems 28 (2012)‎, ‎Article ID 085004‎, ‎18 pages‎.

‎S‎. ‎Maruster and C‎. ‎Popirlan‎, ‎On the Mann-type iteration and convex feasibility problem‎, ‎ J‎. ‎Comput‎. ‎Appl‎. ‎Math. 212 (2008) 390--396‎.

‎A‎. ‎Moudafi‎, ‎A note on the split common fixed-point problem for quasi-nonexpansive operators‎, ‎ Nonlinear Anal. 74 (2011) 4083--4087‎.

‎A‎. ‎Moudafi‎, ‎Alternating CQ-algorithm for convex feasibility and split fixed-point problems‎, ‎ J‎. ‎Nonlinear Convex Anal. 15 (2014)‎, ‎no.~4‎, ‎809--818‎.

‎A‎. ‎Moudafi‎, ‎Second-order differential proximal methods for equilibrium problems‎, ‎ J‎. ‎Inequal‎. ‎Pure Appl‎. ‎Math. 4 (2003)‎, ‎no‎. ‎1‎, ‎Art‎. ‎18‎.

‎A‎. ‎Moudafi and B.S‎. ‎Thakur‎, ‎Solving proximal split feasibility problems without prior knowledge of operator norms‎, ‎ Optim‎. ‎Lett. 8 (2014)‎, ‎no.~7‎, ‎2099--2110‎.

‎B‎. ‎Qu and N‎. ‎Xiu‎, ‎A note on the CQ algorithm for the split feasibility problem‎, ‎ Inverse Problems 21 (2005) 1655--1665‎.

‎R.T‎. ‎Rockafellar and R‎. ‎Wets‎, ‎Variational Analysis‎, ‎Springer‎, ‎1998‎.

Y‎. ‎Shehu‎, ‎New convergence theorems for split common fixed point problems in Hilbert spaces‎, ‎ J‎. ‎Nonlinear Convex Anal. 16 (2015) 167-181‎.

‎H.K‎. ‎Xu‎, ‎Iterative algorithms for nonlinear operators‎, ‎ J‎. ‎Lond‎. ‎Math‎. ‎Soc. 66 (2002) 240--256‎.

‎H.K‎. ‎Xu‎, ‎Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem‎, ‎ Inverse Problems 22 (2006) 2021--2034‎.

H.K‎. ‎Xu‎, ‎Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces‎, ‎ Inverse Problems 26 (2010)‎, ‎Article ID 105018‎, ‎17 pages‎.

Q‎. ‎Yang‎, ‎The relaxed CQ algorithm solving the split feasibility problem‎, ‎ Inverse Problems 20 (2004) 1261--1266‎.

‎Q‎. ‎Yang and J‎. ‎Zhao‎, ‎Generalized KM theorems and their applications‎, ‎ Inverse Problems 22 (2006) 833--844‎.

‎Q‎. ‎Yang and J‎. ‎Zhao‎, ‎A simple projection method for solving the multiple-sets split feasibility problem‎, ‎ Inverse Probl‎. ‎Sci‎. ‎Eng. 21 (2013) 537--546‎.

‎Y‎. ‎Yao‎, ‎J‎. ‎Wu and Y.C‎. ‎Liou‎, ‎Regularized methods for the split feasibility problem‎, ‎ Abstr‎. ‎Appl‎. ‎Anal. 2012 (2012)‎, ‎Article ID 140679‎, ‎13 pages‎.

‎J‎. ‎Zhao‎, ‎Solving split equality fixed point problem of quasi-nonexpansive mappings without prior knowledge of operator norms‎, ‎ Optimizations 64 (2015)‎, ‎no.~12‎, ‎2619--2630‎.

‎J‎. ‎Zhao and S‎. ‎He‎, ‎Strong Convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings‎, ‎ J‎. ‎Appl‎. ‎Math. 2012 (2012)‎, ‎Article ID 438023‎, ‎12 pages‎.