Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

Document Type: Research Paper

Authors

1 Department of Mathematics‎, ‎Sahand University of Technology‎, ‎Tabriz‎, ‎Iran.

2 Department of Mathematics‎, ‎Marand Branch‎, ‎Islamic Azad University‎, ‎Marand‎, ‎Iran.

Abstract

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

Keywords

Main Subjects


S. Alizadeh and F. Moradlou, Weak and strong convergence theorems for m-generalized hybrid mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 46 (2015), no. 1, 315--328.

R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973) 341--355.

C.E. Chidume and S.A. Mutangadura, n example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Am. Math. Soc. 129 (2001), no. 8, 2359--2363.

A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22 (1975), no. 1, 81--86.

M.-H. Hsu, W. Takahashi and J.-C. Yao, Generalized hybrid mappings in Hilbert spaces and Banach spaces, Taiwanese J. Math. 16 (2012), no. 1, 129--149.

S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 40 (1974) 147--150.

F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), no. 2, 166--177.

W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506--510.

K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), no. 2, 372--379.

S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274--276.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417--428.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), no. 1, 79--88.

W. Takahashi and J.-C. Yao, Weak convergence theorems for generalized hybrid mappings in Banach spaces, J. Nonlinear Anal. Optim. 2 (2011), no. 1, 155--166.

W. Takahashi, N.-C. Wong and J.-C. Yao, Fixed point theorems for new generalized hybrid mappings in Hilbert spaces and applications, Taiwanese J. Math. 17 (2013), no. 5, 1597--1611.

K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301--308.

H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127--1138.