Coordinate finite type invariant surfaces in Sol spaces

Document Type : Research Paper


Department of‎ ‎Mathematics Education and RINS‎, ‎Gyeongsang National University‎, ‎Jinju‎, ‎660-701‎, ‎South Korea.


In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $\rm Sol_3$. Also, we 
characterize the surfaces in $\rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $\Delta$ of the surface.


Main Subjects

L.J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying Δx = A x‎ + ‎B, Pacific J. Math. 156 (1992), no. 2, 201--208.
L.J. Alias, A. Ferrandez and P. Lucas, Submanifolds in pseudo-Euclidean space satisfying the condition Δx = A x‎ + ‎B, Geom. Dedicata 42 (1992) 345--354.
B.K. Bayram, K. Arslan, N. Onen and B. Bulca, Coordinate finite type rotational surfaces in Euclidean spaces, Filomat 28 (2014), no. 10, 2131--2140.
 B.Y. Chen, A report on submanifold of finite type, Soochow J. Math. 22 (1996), no. 2, 117--337.
F. Dillen, J. Pas and L. Vertraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), no. 1, 10--21.
O.J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), no. 2, 105--112.
Th. Hasanis and Th. Vlachos, Hypersurfaces of En+1 satisfying Δx = Ax+B, J. Aust. Math. Soc. 53 (1992), no. 3, 377--384.
R. Lopez and M.I. Munteanu, Invariant surfaces in the homogeneous space Sol with constant curvature, Math. Nachr. 287 (2014), no. 8-9, 1013--1024.
T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380--385.
W. Thurston, Three Dimensional Geometry and Topology, Princeton Math. Ser. 35, Princeton Univ. Press, Princeton, 1997.
D.W. Yoon and J.W. Lee, Translation invariant surfaces in the 3-dimensional Heisenberg group, Bull. Iranian Math. Soc. 40 (2014), no. 6, 1373--1385. D.W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas.
Mat. Ser. III, 48 (2013), no. 2, 415--428.