Finite groups all of whose proper centralizers are cyclic

Document Type : Research Paper


Department of Mathematics‎, ‎Faculty of Sciences‎, ‎University of Zanjan‎, ‎P.O‎. ‎Box 45371-38791‎, ‎Zanjan‎, ‎Iran.


‎A finite group $G$ is called a $CC$-group ($G\in CC$) if the centralizer of each noncentral element of $G$ is cyclic‎. ‎In this article we determine all finite $CC$-groups.


Main Subjects

A. Abdollahi, S. Akbari and H. Maimani, Non-Commuting graph of a group, J. Algebra 298 (2006), no. 2, 468--492.
A. Abdollahi, S.M. Jafarian Amiri and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007), no. 1, 43--57.
A. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000), no. 2, 139--146.
A. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (2005), no. 1-2, 217--227.
S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366--374.
S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math. Soc. 82 (2010), no. 2, 293--304.
B. Huppert, Endlich Gruppen I, Springer-Verlag, Berlin, 1967.
N. Ito, On finite groups with given conjugate type I, Nagoya J. Math. 6 (1953) 17--28.
S.M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl. 14 (2015), no. 1, Article ID 1550003, 13 pages.
S.M. Jafarian Amiri, M. Amiri, H. Madadi and H. Rostami, Finite groups have even more centralizers, Bull. Iranian Math. Soc. 41 (2015), no. 6, 1423--1431.
S.M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ. Math. Debrecen 87 (2015), no. 3-4, 429--437.
O.H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in: Surveys in Combinatorics 2005, pp. 29--56, Lond. Math. Soc. Lecture Note Ser. 327, Cambridge Univ. Press, Cambridge, 2005.
J. Rebmann, F-Grouppen, Arch. Math 22 (1971) 225--230.
D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1996.
R. Schmidt, Zentralisatorverbande endlicher gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970) 97--131.
M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc 99 (1961) 425--470.
The GAP Group, GAP-Groups, Algoritms and Programming, Version 4.4.10, 2007.
M. Zarrin, Criteria for the solubility of finite groups by their centralizers, Arch. Math. 96 (2011), no. 3, 225--226.
M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iranian Math. Soc. 39 (2013), no. 3, 517--521.