Modules for which every non-cosingular submodule is a summand

Document Type : Research Paper


Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran.


‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some general properties of NS-modules‎. ‎Several‎ ‎examples are provided to separate different concepts‎. ‎It is shown that every non-cosingular‎ ‎NS-module is a direct sum of indecomposable modules‎. ‎We‎ ‎also discuss on finite direct sums of NS-modules.


Main Subjects

F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and projectivity in module theory, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
M. Harada, On small submodules in the total quotient ring of a commutative ring, Rev. Un. Mat. Argentina 28 (1977), no. 2, 99--102.
D. Keskin Tütüncü, Finite direct sums of (D1)-modules, Turkish J. Math. 22 (1998), no. 1, 85--91.
D. Keksin Tütüncü, On lifting modules, Comm. Algebra 28 (2000), no. 7, 3427--3440.
D. Keskin Tütüncü, M.J. Nematollahi and Y. Talebi, On H-supplemented modules, Algebra Colloq. 18 (2011), Special Issue no. 1, 915--924.
S.H. Mohamed and B.J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Ser. 147, Cambridge Univ. Press, 1990.
N.O. Ertaş and R. Tribak, Two generalizations of lifting modules, Internat. J. Algebra 3 (2009), no. 13-16, 599--612.
A.C. Özcan, A. Harmanci and P.F. Smith, Duo modules, Glasg. Math. J. 48 (2006), no. 3, 533--545.
Y. Talebi and M.J. Nematollahi, Modules with C-condition, Taiwanese J. Math. 13 (2009), no. 5, 1451--1456.
Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30 (2002), no. 3, 1449--1460.
R. Tribak and D. Keskin Tütüncü, On ZM-semiperfect modules, East-West J. Math. 8 (2006), no. 2, 195--205.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.