Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$

Document Type: Research Paper

Authors

1 School of Mathematical Sciences, ‎North-West University ‎(Mafikeng)‎, ‎P Bag X2046‎, ‎Mmabatho 2735‎, ‎South Africa.

2 School of Mathematical ‎Sciences, ‎North-West University ‎(Mafi-keng)‎, ‎P Bag X2046‎, ‎Mmabatho 2735‎, ‎South Africa.

Abstract

‎In our paper [A‎. ‎B‎. ‎M‎. ‎Basheer and J‎. ‎Moori‎, ‎On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors‎, ‎Fischer matrices and the ordinary character table of the split‎ ‎extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$‎ ‎is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2).$ The‎ ‎purpose of this paper is the determination of the conjugacy classes‎ ‎of $\overline{G}$ using the coset analysis method‎, ‎the determination‎ ‎of the inertia factors‎, ‎the computations of the Fischer matrices and‎ ‎the ordinary character table of the split extension $\overline{G}=‎‎2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎Through various theoretical and computational aspects we‎ ‎were able to determine the structures of the inertia factor groups‎. ‎These are the groups $H_{1} = H_{2} = (3^{1+2}{:}8){:}2,\ $ $H_{3} =‎‎QD_{16}$ and $H_{4} = D_{12}.$ The Fischer matrices‎ ‎$\mathcal{F}_{i}$ of $\overline{G},$ which are complex valued‎ ‎matrices‎, ‎are all listed in this paper and their sizes range between‎ ‎2 and 5‎. ‎The full character table of $\overline{G},$ which is $41‎ ‎\times 41$ complex valued matrix‎, ‎is available in the PhD thesis of‎ ‎the first author‎, ‎which could be accessed online‎.

Keywords

Main Subjects


A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012. http://researchspace.ukzn.ac.za/xmlui/handle/10413/6674?show=full

A. B. M. Basheer and J. Moori, Fischer matrices f Dempwolff group 25GL(5; 2), Int. J. Group Theory 1 (2012), no. 4, 43--63.

A. B. M. Basheer and J. Moori, On the non-split extension group 26Sp(6; 2), Bull. Iranian Math. Soc. 39 (2013), no. 6, 1189--1212.

A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer Theory, London Mathematical Society Lecture Note Series, 2013 by Cambridge University Press, 422 (2015), 160--172.

A. B. M. Basheer and J. Moori, On a group of the form 210:(U5(2):2); Ital. J. Pure Appl. Math., Accepted.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.4.10, 2007. http://www.gap-system.org Maxima, A Computer Algebra System. Version 5.18.1, 2009. http://maxima.sourceforge.net

J. Moori, On the Groups G+ and G of the form 210:M22 and 210:M22, PhD Thesis, University of Birmingham, 1975.

J. Moori, On certain groups associated with the smallest Fischer group, J. Lond. Math. Soc. (2) 23 (1981), no. 1, 61--67.

J. Moori and Z. Mpono, The Fischer-Clifford matrices of the group 26:SP6(2), Quaest. Math. 22 (1999), no. 2, 257--298.

Z. E. Mpono, Fischer Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, Pietermaritzburg, 1998.

H. Pahlings, The character table of 21+22 + Co2, J. Algebra 315 (2007), no. 1, 301--325.


Volume 43, Issue 1
January and February 2017
Pages 41-52
  • Receive Date: 25 September 2014
  • Revise Date: 21 February 2017
  • Accept Date: 08 October 2015