On characterizations of hyperbolic harmonic Bloch and Besov spaces

Document Type: Research Paper

Author

Department of Mathematics‎, ‎Shaoxing University‎, ‎Shaoxing 312000‎, ‎Zhejiang Province‎, ‎P.R‎. ‎China.

Abstract

‎We define hyperbolic harmonic $\omega$-$\alpha$-Bloch space‎ ‎$\mathcal{B}_\omega^\alpha$ in the unit ball $\mathbb{B}$ of ${\mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$\frac{\omega\big((1-|x|^2)^{\beta}(1-|y|^2)^{\alpha-\beta}\big)|f(x)-f(y)|}{[x,y]^\gamma|x-y|^{1-\gamma}‎},$$ where $0\leq \gamma\leq 1$‎. ‎Similar results are extended to‎ ‎little $\omega$-$\alpha$-Bloch and Besov spaces‎. ‎These obtained‎ ‎characterizations generalize the corresponding ones which were obtained by G‎. ‎Ren‎ ‎and U‎. ‎K\"{a}hler in 2002 and 2005‎.

Keywords

Main Subjects


L.V. Ahlfors, Mobius Transformations in Several Dimensions, University of Minnesota, 1981.

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.

S. Chen, S. Ponnusamy and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, Math Z. 279 (2015), no. 1-2, 163--183.

S. Chen, S. Ponnusamy and X. Wang, Weighted Lipschitz continuity, Schwarz-Pick's lemma and Landau-Bloch's theorem for hyperbolic-harmonic mappings in Cn, Math. Model. Anal. 18 (2013), no. 1, 66--79.

K.M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), no. 2, 143--167.

F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA, Math Ann. 273 (1986), no. 2, 317--335.

S. Li, Characterizations of Besov spaces in the unit ball, Bull. Korean Math. Soc. 49 (2012), no. 1, 89--98.

S. Li and H. Wulan, Characterizations of α-Bloch spaces on the unit ball, J. Math. Anal. Appl. 337 (2008), 880--887.

M. Nowak, Bloch space and Mobius invariant Besov spaces on the unit ball of Cn, Complex Variables, Theory Appl. 44 (2001), 1--12.

G. Ren and U. Kahler, Weighted Holder continuity of hyperbolic harmonic Bloch functions, Z. Anal. Anwend. 21 (2002), no. 3, 599--610.

G. Ren and U. Kahler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 3, 743--755.

M. Stoll, Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Var. Elliptic Equ. 57 (2012), no. 1, 63--89.

A.E. Üreyen, An estimate of the oscillation of harmonic reproducing kernels with applications, J. Math. Anal. Appl. 434 (2016), no. 1, 538--553.

R. Yoneda, The harmonic Bloch and Besov spaces by an oscillation, Proc. Edinb. Math. Soc. (2) 45 (2002), no. 1, 229--239.

R. Zhao, A characterization of Bloch-type spaces on the unit ball of Cn, J. Math. Anal. Appl. 330 (2007), no. 1, 291--297.

K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.


Volume 43, Issue 5
September and October 2017
Pages 1183-1194
  • Receive Date: 16 November 2015
  • Revise Date: 29 April 2016
  • Accept Date: 12 May 2016