Determination of a jump by Fourier and Fourier-Chebyshev series

Document Type: Research Paper


University of Sarajevo‎, ‎Deaprtment of Mathematics‎, ‎Zmaja od Bosne 33-35‎, ‎71 000 Sarajevo‎, ‎Bosnia and Herzegovina.


‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of jump‎ ‎discontinuities by means of the tails of integrated Fourier-Chebyshev series are also derived.


Main Subjects

M. Avdispahić, On the classes BV and V [υ], Proc. Amer. Math. Soc. 95 (1985), no. 2, 230--234.

M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Int. J. Math. Math. Sci. 9 (1986), no. 2, 223--244.

M. Avdispahić, On the determination of the jump of a function by its Fourier series, Acta Math. Hungar. 48 (1986), no. 3--4, 267--271.

M. Avdispahić, Fejer's theorem for the classes Vp, Rend. Circ. Mat. Palermo (2) 35 (1986), no. 1, 90--101.

M. Avdispahić, On theorems of Fejer and Lukacs, in: International Conference on Constructive Theory of Functions, Varna, 1987.

Z.A. Chanturiya, The modulus of variation of a function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974) 63--66.

P. Csillag, Uber die Fourierkonstanten einer Function von beschrankter Schwankung, Mat. es Fiz. Lapok 27 (1918) 301--308.

L. Fejer, Uber die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, J. Reine Angew. Math. 142 (1913) 165--188.

B.I. Golubov, Determination of the jump of a function of bounded p􀀀variation from its Fourier series, Mat. Zametki 12 (1972), no. 1, 19--28.

G. Kvernadze, Determination of the jumps of a bounded function by its Fourier series, J. Approx. Theory 92 (1998), no. 2, 167--190.

G. Kvernadze, T. Hagstrom and H. Shapiro, Detecting the singularities of a function of Vp class by its integrated Fourier series, Comput. Math. Appl. 39 (2000), no. 9-10, 25--43.

S. Perlman, Functions of generalized variation, Fund. Math. 105 (1980), no. 3, 199--211.

H.L. Royden, Real Analysis, Macmillan Publishing Company, 3rd edition, New York, 1988.

J. Tong, On a conjecture on the degree of approximation of Fourier series, Arch. Math. (Basel) 45 (1985), no. 3, 252--254.

D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972) 107--117; errata, ibid. 44 (1972) 651.

N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. MIT 3 (1924), no. 2, 72--94.

L.C. Young, Sur une generalisation de la notion de variation de puissance p-ieme bornee au sense de M. Wiener, et sur la convergence des series de Fourier, C. R. Acad. Sci. Paris 204 (1937) 470--472.

Volume 43, Issue 7
November and December 2017
Pages 2307-2321
  • Receive Date: 30 September 2016
  • Revise Date: 13 March 2017
  • Accept Date: 13 March 2017