• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • Export Citation Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Bulletin of the Iranian Mathematical Society
Articles in Press
Current Issue
Journal Archive
Volume Volume 43 (2017)
Volume Volume 42 (2016)
Volume Volume 41 (2015)
Volume Volume 40 (2014)
Volume Volume 39 (2013)
Volume Volume 38 (2012)
Volume Volume 37 (2011)
Issue No. 4
Issue No. 3
Issue No. 2
Issue No. 1
Volume Volume 36 (2010)
Volume Volume 35 (2009)
Volume Volume 34 (2008)
Volume Volume 33 (2007)
Volume Volume 32 (2006)
Volume Volume 31 (2005)
Volume Volume 30 (2004)
Volume Volume 29 (2003)
Volume Volume 28 (2002)
Volume Volume 27 (2001)
Shahryari, M. (2011). Monomial Irreducible sln-Modules. Bulletin of the Iranian Mathematical Society, 37(No. 3), 183-195.
M. Shahryari. "Monomial Irreducible sln-Modules". Bulletin of the Iranian Mathematical Society, 37, No. 3, 2011, 183-195.
Shahryari, M. (2011). 'Monomial Irreducible sln-Modules', Bulletin of the Iranian Mathematical Society, 37(No. 3), pp. 183-195.
Shahryari, M. Monomial Irreducible sln-Modules. Bulletin of the Iranian Mathematical Society, 2011; 37(No. 3): 183-195.

Monomial Irreducible sln-Modules

Article 13, Volume 37, No. 3, September 2011, Page 183-195  XML PDF (279 K)
Document Type: Research Paper
Author
M. Shahryari
Receive Date: 02 September 2009,  Revise Date: 15 March 2012,  Accept Date: 20 February 2010 
Abstract
In this article, we introduce monomial irreducible representations of the special linear Lie
algebra $sln$. We will show that this kind of representations have bases for
which the action of the Chevalley generators of the Lie algebra on the basis elements
can be given by a simple formula.
Keywords
symmetric group; character theory; representations of Lie algebras; symmetry classes of tensors
Statistics
Article View: 1,778
PDF Download: 1,318
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.