The unit sum number of Baer rings

Document Type: Other

Authors

1 Semnan UniversityFaculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran.

2 Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran.

Abstract

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of $R$ is isomorphic
to $Z_2$ and we characterize regular Baer rings with unit sum numbers $\omega$ and $\infty$. Then as an application, we discuss the unit  sum number of some classes of group rings.

Keywords

Main Subjects


N. Ashrafi, The unit sum number of some projective modules, Glasg. Math. J. 50 (2008), no. 1, 71--74.

N. Ashrafi and N. Pouyan, The unit sum number of discrete modules. Bull. Iranian Math. Soc. 37 (2011), no. 4, 243--249.

N. Ashrafi and P. Vamos, On the unit sum number of some rings, Q. J. Math. 56 (2005), no. 1, 1--12.

S. K. Berberian, Baer Rings and Baer *-rings, The University of Texas, Austin, 1988.

I. G. Connell, On the group ring, Canad. J. Math. 15 (1963) 650--685.

B. Goldsmith, S. Pabst and A. Scott, Unit sum number of rings and modules, Qcuart. J. Math. Oxford (2) 49 (1998), no. 195, 331--344.

X.J. Guo and K.P. Shum, Reduced p.p.-rings without identity, Int. J. Math. Math. Sci. 2006 (2006), Article ID 93890, 7 pages.

X. J. Guo and K. P. Shum, Baer semisimple modules and Baer rings, Algebra Discrete Math. 2008 (2008) no. 2, 42--49.

D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra 48 (1977), no. 1, 1--16.

M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974) 182--193.

I. Kaplansky, Topological representation of algebras,II, Trans. Amer. Math. Soc. 68 (1950), 62--75.

I. Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.

D. Khurana and A. K. Srivastava, Right Self-injective Rings in Which Each Element is Sum of Two Units, J. Algebra Appl. 6 (2007), no. 2, 281--286.

D. Khurana and S. Ashish, Unit sum numbers of right self-injective rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 355--360.

T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.

J. Y. Kim and J. K. Park, On Regular Baer rings, Trends in Math. 1 (1998), no. 1, 37--40.

S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.

S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32 (2004), no. 1, 103--123.

L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh-London, 1964.

P. Vamos, 2-Good Rings, Q. J. Math. 56 (2005), no. 3, 417--430.

K. G.Wolfson, An ideal theoretic characterization of the ring of all linear transformation, Amer. J. Math. 75 (1953) 358--386.

Z. Yi and Y. Q. Zhou, Baer and quasi-Baer properties of group rings, J. Aust. Math. Soc. 83 (2007), no. 2, 285--296.

D. Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954) 627--630.


Volume 42, Issue 2
March and April 2016
Pages 427-434
  • Receive Date: 04 November 2013
  • Revise Date: 10 February 2015
  • Accept Date: 10 February 2015