Document Type: Research Paper

**Authors**

College of Management and Economics, Tianjin University, Tianjin 300072, China.

**Abstract**

Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let ${S_n}$ and ${T_n}$ be sequences of nonexpansive self-mappings of $C$, where one of them is a strongly nonexpansive sequence. K. Aoyama and Y. Kimura introduced the iteration process $x_{n+1}=\beta_nx_n+(1-\beta_n)S_n(\alpha_nu+(1-\alpha_n)T_nx_n)$ for finding the common fixed point of ${S_n}$ and ${T_n}$, where $uin C$ is an arbitrarily (but fixed) element in $C$, $x_0\in C$ arbitrarily, ${\alpha_n}$ and ${\beta_n}$ are sequences in $[0,1]$. But in the case where $u\notin C$, the iterative scheme above becomes invalid because $x_n$ may not belong to $C$. To overcome this weakness, a new iterative scheme based on the thought of boundary point method is proposed and the strong convergence theorem is proved. As a special case, we can find the minimum-norm common fixed point of ${S_n}$ and ${T_n}$ whether $0\in C$ or $0\notin C$.

**Keywords**

- minimum-norm common fixed point
- strongly nonexpansive mappings
- strong convergence
- boundary point method
- variational inequality

**Main Subjects**

K. Aoyama and Y. Kimura, Strong convergence theorem for strongly nonexpansive sequences, *Appl. Math. Comput. ***217 **(2011), no. 19, 7537--7545.

W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, *J. Convex Anal. ***5 **(1998), no. 1, 45--56.

S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, *J. Optim. Theory Appl. ***147 **(2010), no. 1, 27--41.

L. C. Zeng, N. C. Wong and J. C. Yao, Convergence analysis of iterative sequences for a pair of mappings in Banach spaces, *Acta Math. Sin. (Engl. Ser.) ***24 **(2008), no. 3, 463--470.

Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, *Appl. Math. Comput. ***186 **(2007), no. 2, 1551--1558.

K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, *J. Nonlinear Convex Anal. ***8 **(2007), no. 3, 471--489.

S. Chandok, W. Sintunavarat and P. Kumam, Some coupled common fixed points for a pair of mappings in partially ordered G-metric spaces, *Math. Sci. (Springer) ***7 **(2013), 7 pages.

W. Shatanawi and M. Postolache, Common fixed point results for mappings under non- linear contraction of cyclic form in ordered metric spaces, *Fixed Point Theory Appl. ***2013 **(2013) 13 pages.

D. K. Patel, P. Kumam and D. Gopal, Some discussion on the existence of common fixed points for a pair of maps, *Fixed Point Theory Appl. ***2013 **(2013) 17 pages.

H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, *J. Math. Anal. Appl. ***298 **(2004), no. 1, 279--291.

Hong-Kun Xu, Viscosity method for hierarchical fixed point approach to variational inequalities, *Taiwanese J. Math. ***14 **(2010), no. 2, 463--478.

A. Mouda, Viscosity approximation methods for fixed-points problems, *J. Math. Anal. Appl. ***241 **(2000), no. 1, 46--55.

R. Chen and Z. Zhu, Viscosity approximation method for accretive operator in Banach space, *Nonlinear Anal. ***69 **(2008), no. 4, 1356--1363.

Rabian Wangkeeree, and Pakkapon Preechasilp, Viscosity approximation methods for nonexpansive semigroups in CAT(0) spaces, *Fixed Point Theory Appl. ***2013 **(2013) 16 pages.

P. E. Maing*e*, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, *Comput. Math. Appl. ***59 **(2010), no. 1, 74--79.

J. S. Jung, Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces, *Nonlinear Anal. ***72 **(2010), no. 1, 449--459.

J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, *Nonlinear Anal. ***64 **(2006), no. 11, 2536--2552.

S. S. Chang, Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, *J. Math. Anal. Appl. ***323 **(2006), no. 2, 1402--1416.

L. C. Ceng, H. K. Xu and J. C. Yao, The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces, *Nonlinear Anal. ***69 **(2008), no. 4, 1402--1412.

J. Lou, L. J. Zhang and Z. He, Viscosity approximation methods for asymptotically nonexpansive mappings, *Appl. Math. Comput. ***203 **(2008), no. 1, 171--177.

S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, *J. Math. Anal. Appl. ***331 **(2007), no. 1, 506--515.

S. Plubtieng and T. Thammathiwat, A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities, *J. Global Optim. ***46 **(2010), no. 3, 447--464.

K. Aoyama, An iterative method for a variational inequality problem over the common fixed point set of nonexpansive mappings, Nonlinear analysis and convex analysis, 21--28, Yokohama Publ., Yokohama, 2010.

C. M. Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, *Nonlinear Anal. ***64 **(2006), no. 11, 2400--2411.

S. Wang, A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces, *Appl. Math. Lett. ***24 **(2011), no. 6, 901--907.

T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappingsin general Banach spaces, *Fixed Point Theory Appl. *(2005), no. 1, 103--123.

S. Wang, Convergence and certain control conditions for hybrid iterative algorithms, *Appl. Math. Comput. ***219 **(2013), no. 20, 10325--10332.

Y. Yao, Y. J. Cho and Y. C. Liou, Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems, *European J. Oper. Res. ***212 **(2011), no. 2, 242--250.

H. K. Xu, Iterative algorithms for nonlinear operators, *J. London Math. Soc. (2) ***66 **(2002), no. 1, 240--256.

S. He and W. Zhu, A modified Mann iteration by boundary point method for finding minimum-norm fixed point of nonexpansive mappings, *Abstr. Appl. Anal. ***2013 **(2013), Article ID 768595, 6 pages.

Volume 42, Issue 3

May and June 2016

Pages 719-730

**Receive Date:**12 December 2014**Revise Date:**15 April 2015**Accept Date:**17 April 2015